更新时间:2021-10-15 17:40:42
封面
版权信息
内容简介
序
前言
第1章 基础篇
1.1 ASCII文件和binout文件的区别
1.2 LSPP曲线格式的要求
1.3 自适应网格的设置
1.4 圆柱坐标系下的边界条件定义
1.5 阻尼定义
1.6 曲线离散
1.7 动态松弛设置
1.8 加快动态松弛收敛速度的办法
1.9 通过DR计算回弹
1.10 通过DR计算重力
1.11 进行DR计算的注意事项
1.12 进行DR计算时出现警告的原因
1.13 能量守恒的含义
1.14 极值筛选
1.15 dynain文件的作用
1.16 显式计算的时间步长
1.17 质量缩放的原理
1.18 MPP基础知识
1.19 RBE2相关数据的含义
1.20 d3hsp文件中消耗时间的含义
1.21 截面方向的意义及其坐标系和定义
1.22 将所有的binout数据一起进行后处理
1.23 将特定的ASCII数据写入binout文件
第2章 材料篇
2.1 统一单位制
2.2 单位制转换
2.3 对同一材料不同应变率曲线的处理
2.4 塑性模型的应力应变注意事项
2.5 超出曲线范围的处理方法
2.6 应力应变曲线走势计算精度的表达方式
2.7 从材料拉伸试验到最终应用材料曲线的相关流程
2.8 参数起作用的先后顺序对最终曲线的影响
2.9 有效塑性应变
2.10 EOS状态方程
2.11 CTE热膨胀系数的注意事项
2.12 有效应变过大的处理
2.13 VP=0和VP=1的区别
2.14 DT和DT2MS参数的区别和应用
2.15 复合材料的使用
2.16 复合层压材料的后处理
2.17 失效复合材料模型的处理
2.18 正交各向异性材料的常见问题
2.19 塑料材料推荐采用的材料卡片类型
2.20 模拟汽车座椅中的发泡
2.21 混凝土材料的使用
2.22 土壤材料
2.23 添加公共块
2.24 umat程序的区别及MT参数
2.25 umat41和umat41v的正确使用
2.26 常量的个数限制
2.27 发送(错误)消息的标准方法
2.28 获取单元ID等
2.29 查看用户定义的历史变量
2.30 标记单元为“失效”
2.31 获取*define_curve中定义的曲线数据
2.32 从umat子程序中获取壳厚度
2.33 获取初始密度和当前体积
2.34 为超弹性材料编写umat子程序
2.35 编写用于隐式分析的umat子程序
2.36 增量应变传递到子程序中
2.37 控制单元删除前必须失效的积分点数量
第3章 单元篇
3.1 二维分析的要求
3.2 单元节点和单元积分点
3.3 Beam单元的类型及应用场合
3.4 积分梁单元的注意事项
3.5 模拟悬置断裂的Beam
3.6 创建体网格焊点
3.7 建立离散梁
3.8 壳单元公式的注意事项
3.9 壳单元的输出
3.10 壳单元的应变
3.11 壳单元与实体单元的连接
3.12 六面体单元的注意事项
3.13 应力在单元中心输出的意义
3.14 实体单元节点应力和应变的绘制方法
3.15 对积分点结果单独后处理
3.16 获取单元局部坐标系中的应力和应变
3.17 实体单元转二维SPH单元的相关类型
3.18 体积锁死
3.19 沙漏控制
3.20 沙漏出现负值
3.21 负体积处理
3.22 包壳处理
第4章 接触篇
4.1 接触力的计算
4.2 接触的搜索方式
4.3 接触刚度的计算
4.4 SOFT=1的接触
4.5 修改接触刚度
4.6 一维接触的设置
4.7 两种单面接触
4.8 梁与壳接触的设置
4.9 接触的杀死和激活设置