参考文献
1.秦环龙,尹明明.肠道微生态和肠道营养.中华普通外科学文献,2015,9(3):182-187.
2.刘瑞雪,李勇超,张波.肠道菌群微生态平衡与人体健康的研究进展.食品工业科技,2016,37(6):383-387.
3.王凤,赵成英,田桂芳,等.果蔬功能成分与肠道菌群相互作用研究进展.生物产业技术,2017(4):53-61.
4.甄建华,于河,谷晓红.肠道微生态医学研究进展概述.中华中医药杂志,2017,32(7):3069-3075.
5.Oozeer R,Van LK,Ludwig T,et al. Intestinal microbiology in early life:specific prebiotics can have similar functionalities as human-milk oligosaccharides. American Journal of Clinical Nutrition,2013,98(2):561S-571S.
6.Yatsunenko T,Rey FE,Manary MJ,et al. Human gut microbiome viewed across age and geography.Nature,2012,486(7042):222-227.
7.唐立.人类肠道微生态基础与应用研究进展.沈阳医学院学报,2016,18(5):321-324.
8.刘昌孝.肠道菌群与健康、疾病和药物作用的影响.中国抗生素杂志,2018,43(1):1-14.
9.Shen X,Miao J,Wan Q,et al. Possible correlation between gut microbiota and immunity among healthy middle-aged and elderly people in southwest China. Gut Pathogens,2018,10(1):4.
10.Byndloss MX,Olsan EE,RiveraChávez F,et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science,2017,357(6351):570.
11.Takiishi T,Fenero C,Câmara N. Intestinal barrier and gut microbiota:Shaping our immune responses throughout life. Tissue Barriers,2017,5(4):e1373208.
12.Yamanaka T,Helgeland L,Farstad IN,et al. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle- associated epithelium of Peyer’s patches. The Journal of Immunology,2003,170(2):816-822.
13.王丽娜,周旭春.肠道菌群与肠黏膜免疫及相关肠道疾病的研究进展.中国微生态学杂志,2017,29(4):494-497.
14.Ince MN,Blazar BR,Edmond MB,et al. Understanding luminal microorganisms and their potential effectiveness in treating intestinal inflammation. Inflammatory Bowel Diseases,2016,22(1):194-201.
15.Atarashi K,Tanoue T,Oshima K,et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature,2013,500(7461):232-236.
16.Stefka AT,Feehley T,Tripathi P,et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA,2014,111(36):13145-13150.
17.Olszak T,AN D,Zeissig S,et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science,2012,336(6080):489-493.
18.Valdes AM,Walter J,Segal E,et al. Role of the gut microbiota in nutrition and health. BMJ,2018,361:k2179.
19.刘彩虹,张和平.肠道菌群与肠道内营养物质代谢的相互作用.中国乳品工业,2014,42(5):33-36.
20.Filipe DV,Petia KD,Daisy G,et al. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell,2014,156(1/2):84-96.
21.王晨,钟赛意,邹宇晓.膳食纤维经肠道微生态途径调节脂质代谢作用的研究进展.食品科学,2019,40(3):347-356.
22.Ghazalpour A,Cespedes I,Bennett BJ,et al. Expanding role of gut microbiota in lipid metabolism. Current Opinion in Lipidology,2016,27(2):1.
23.郭慧慧,黄帅,王璐璐,等.肠道菌群对机体营养物质的代谢研究.中国医药生物技术,2016,11(4):340-345.
24.De Mello VD,Paananen J,Lindstrom J,et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Scientific Reports,2017,7:46337.
25.Conlon MA,Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients,2015,7(1):17-44.
26.Fröhlich EE,Farzi A,Mayerhofer R,et al. Cognitive impairment by antibiotic-induced gut dysbiosis:Analysis of gut microbiota-brain communication. Brain,Behavior,and Immunity,2016,56:140-155.
27.Yano JM,Yu K,Donaldson GP,et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell,2015,161(2):264-276.
28.Wang HX,Wang YP. Gut Microbiota-brain Axis. Chinese Medical Journal,2016,129(19):2373-2380.
29.Mulak A,Bonaz B,Department of Gastroenterology and Hepatology,Wroclaw Medical University,et al.Brain-gut-microbiota axis in Parkinson’s disease. World Journal of Gastroenterology,2015,21(37):10609-10620.
30.Bauer KC,Huus KE,Finlay BB. Microbes and the Mind:Emerging Hallmarks of the Gut Microbiota-Brain Axis. Cellular Microbiology,2016,18(5):632-644.
31.Dissanayake D,Hall H,Bergbrown N,et al. Nuclear factor-KB1 controls the functional maturation of dendritic cells and prevents the activation of autoreactive T cells. Nature Medicine,2011,17(12):1663-1667.
32.Sudo N,Chida Y,Aiba Y,et al. Postnatal microbial colonization programs the hypothalamic-pituitaryadrenal system for stress response in mice. The Journal of physiology,2004,558(1):263-275.
33.Mayer EA,Tillisch K,Gupta A. Gut/brain axis and the microbiota. Journal of Clinical Investigation,2015,125(3):926-938.
34.Yano J,Yu K,Donaldson G,et al. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell,2015,161(2):264-276.
35.Rothschild D,Weissbrod O,Barkan E,et al. Environment dominates over host genetics in shaping human gut microbiota. Nature,2018,555(7695):210-215.
36.Toscano M,Grandi RD,Grossi E,et al. Role of the Human Breast Milk-Associated Microbiota on the Newborns’ Immune System:A Mini Review. Frontiers in Microbiology,2017,8:2100.
37.Cacho NT,Lawrence RM. Innate Immunity and Breast Milk. Frontiers in Immunology,2017,8:584.
38.Davis EC,Wang M,Donovan SM. The Role of Early Life Nutrition in the Establishment of Gastrointestinal Microbial Composition and Function. Gut Microbes,2017,8(2):143-171.
39.杨成彬,赵梅珍,杨平常,等.肠道菌群与婴幼儿食物过敏的研究进展.实用临床医学,2014,15(8):117-119,124.
40.Kalliomaki M,Kitjavainen P,Eerola E,et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy & Clin Immunol,2001,107(1):129-134.
41.Abrahamsson T,Jakobsson H,Andersson A,et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clinlmmunol,2012,129(2):434-440.
42.边燕飞,孙志宏,孙天松.母婴间菌群传递的研究进展.中国微生态学杂志,2017,29(6):725-730.
43.赵洁,孙天松.母乳对婴儿肠道菌群及免疫系统影响的研究进展.食品科学,2017,38(1):289-296.
44.Garrido D,Dallas DC,Mills DA. Consumption of human milk glycoconjugates by infant-associated bifidobacteria:mechanisms and implications. Microbiology,2013,159(4):649-664.
45.Newburg DS,He Y. Neonatal gut microbiota and human milk glycans cooperate to attenuate infection and inflammation. Clin Obstet Gynecol,2015,58(4):814-826.
46.Gotoh A,Katoh T,Sakanaka M,et al. Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Scientific Reports,2018,8(1):13958.
47.潘善越,周娇锐,于蓉,等.早期饮食如何影响婴儿肠道微生态.中国微生态学杂志,2018,30(4):484-488.
48.Legrand D. Overview of lactoferrin as a natural immune modulator. J Pediatr,2016,173:S10-S15.
49.Makki K,Deehan EC,Walter J,et al. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe,2018,23(6):705-715.
50.Fuller S,Beck E,Salman H,et al. New Horizons for the Study of Dietary Fiber and Health:A Review. Plant Foods Hum Nutr,2016,71(1):1-12.
51.王凤,赵成英,田桂芳,等.果蔬功能成分与肠道菌群相互作用研究进展.生物产业技术,2017(4):53-61.
52.Koh A,Vadder FD,Kovatcheva-Datchary P,et al. From Dietary Fiber to Host Physiology:Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell,2016,165(6):1332-1345.
53.O’Keefe SJ. Diet,microorganisms and their metabolites,and colon cancer. Nat Rev Gastroenterol Hepatol,2016,13(12):691.
54.Walker AW,Ince J,Duncan SH,et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal,2011,5(2):220-230.
55.Ramnani P,Gaudier E,Bingham M,et al. Prebiotic effect of fruit and vegetable shots containing Jerusalem artichoke inulin:a human intervention study. Brit J Nutr,2010,104(2):233-240.
56.Elia M,Cummings JH. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates.Eur J Clin Nutr,2007,61:S40-S74.
57.Pasman W,Wils D,Saniez M,et al. Long-term gastrointestinal tolerance of NUTRIOSE® FB in healthy men. Eur J Clin Nutr,2006,60(8):1024-1034.
58.Shin JH,Nam MH,Lee H,et al. Amelioration of obesity-related characteristics by a probiotic formulation in a high-fat diet-induced obese rat model. European Journal of Nutrition,2017,6(57):2081-2090.
59.Chen D,Yang Z,Xia C,et al. The effect of Lactobacillus rhamnosus hsryfm 1301 on the intestinal microbiota of a hyperlipidemic rat model. BMC Complementary & Alternative Medicine,2014,14(1):386.
60.He Y,Gao M,Cao Y,et al. Nuclear localization of Metabolic enzymes in Immunity and Metastasis. Biochim Biophys Acta,2017,1868(2):359-371.
61.Xue L,He J,Gao N,et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Scientific Reports,2017,7:45176.
62.Fu L,Song J,Wang C,et al. Bifidobacterium infantis Potentially Alleviates Shrimp Tropomyosin-Induced Allergy by Tolerogenic Dendritic Cell-Dependent Induction of Regulatory T Cells and Alterations in Gut Microbiota. Frontiers in Immunology,2017,8:1536.
63.马晨,张和平.益生菌、肠道菌群与人体健康.科技导报,2017,35(21):14-25.
64.Ashraf R,Shah NP. Immune system stimulation by probiotic microorganisms. Critical Reviews in Food Science & Nutrition,2014,54(7):938-956.
65.Butel MJ. Probiotics,gut microbiota and health. Médecine Et Maladies Infectieuses,2014,44(1):1-8.
66.Miyazawa K,He F,Yoda K,et al. Potent effects of,and mechanisms for modification of crosstalk between macrophages and adipocytes by Lactobacilli. Microbiology & Immunology,2012,56(12):847-854.
67.Cheng RY,Li M,Li SS,et al. Vancomycin and ceftriaxone can damage intestinal microbiota and affect the development of the intestinal tract and immune system to different degrees in neonatal mice. Pathogens and Disease,2017,75(8):1-9.
68.范文广,王婷婷,霍贵成.婴幼儿肠道微生物的定殖特征.食品工业科技,2014,35(6):86.
69.张家超,郭壮,孙志宏,等.益生菌对肠道菌群的影响—以Lactobacillus casei Zhang研究为例.中国食品学报,2011,11(9):58-68.
70.Qin J,Li Y,Cai Z,et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature,2012,490(7418):55-60.
71.Zhou W,Sailani MR,Contrepois K,et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes.Nature,2019,569(7758):663-671.
72.Zhao L,Zhang F,Ding X,et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.Science,2018,359(6380):1151-1156.
73.Tonucci LB,Olbrich Dos Santos KM,Licursi de Oliveira L,et al. Clinical application of probiotics in type 2 diabetes mellitus:a randomized,double-blind,placebo-controlled study. Clinical Nutrition,2017,36(1):85-92.
74.Tong X,Xu J,Lian F,et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula:a multicenter,randomized,open label clinical trial. MBio,2018,9(3):e0239217.
75.Vrieze A,Van Nood E,Holleman F,et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology,2012,143(4):913-916.
76.Vogt NM,Kerby RL,Dill-McFarland KA,et al. Gut microbiome alterations in Alzheimer’s disease. Scientific Reports,2017,7(1):13537.
77.Zhuang ZQ,Shen LL,Li WW,et al. Gut microbiota is altered in patients with Alzheimer’s disease. Journal of Alzheimer’s Disease,2018,63(4):1337-1346.
78.Cattaneo A,Cattane N,Galluzzi S,et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging,2017,49:60-68.
79.Martin AM,Yabut JM,Choo JM,et al. The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proceedings of the National Academy of Sciences of the United States of America,2019,116(40):19802-19804.
80.Liu P,Wu L,Peng G,et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain,Behavior,and Immunity,2019,80:633-643.
81.MahmoudianDehkordi S,Arnold M,Nho K,et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-an emerging role for gut microbiome. Alzheimer’s & Dementia,2019,15(1):76-92.
82.Nho K,Kueider-Paisley A,MahmoudianDehkordi S,et al. Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease:relationship to neuroimaging and CSF biomarkers. Alzheimer’s &Dementia,2019,15(2):232-244.
83.Vogt NM,Romano KA,Darst BF,et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimer’s Research & Therapy,2018,10(1):124.
84.Nagpal R,Neth BJ,Wang S,et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine,2019,47:529-542.
85.McCann A,Jeffery IB,Ouliass B,et al. Exploratory analysis of covariation of microbiota-derived vitamin K and cognition in older adults. The American Journal of Clinical Nutrition,2019,110(6):1404-1415.
86.韩天雨,胡扬,张玮佳,等.高原训练中运动员腹泻发生状况及肠道菌群的变化.现代生物医学进展,2018,18(10):1909-1915.
87.Kleessen B,Schrödl W,Stueck M,et al. Microbial and immunological responses relative to high-altitude exposure in mountaineers. Medicine and Science in Sports and Exercise,2005,37(13):13-18.
88.Lan D,Ji W,Lin B,et al. Correlations between gut microbiota community structures of Tibetans and geography.Scientific Reports,2017,7(1):16982.
89.Li K,Dan Z,Gesang L,et al. Comparative analysis of gut microbiota of native Tibetan and Han populations living at different altitudes. PLoS One,2016,11(5):e0155863.
90.Suzuki TA,Martins FM,Nachman MW. Altitudinal variation of the gut microbiota in wild house mice.Molecular Ecology,2019,28:2378-2390.
91.Zhao J,Yao Y,Li D,et al. Characterization of the gut microbiota in six geographical populations of Chinese Rhesus Macaques(Macaca mulatta),implying an adaptation to high-altitude environment. Microbial Ecology,2018,76:565-577.
92.单体栋.低聚半乳糖对急进高原大鼠肠道菌群影响的分子生物学实验研究.兰州:兰州大学,2012.
93.杨文翠,张方信,吴文明,等.急进高原大鼠肠道微生态变化的探讨.胃肠病学和肝病学杂志,2010,19(6):543-545.
94.李玲,安方玉,刘永琦,等.黄芪百合颗粒对高原低氧模型小鼠肠黏膜屏障的保护作用.解放军医学杂志,2016,41(9):773-778.
95.吴文明,张方信.高原缺氧与肠黏膜屏障损伤研究进展.世界华人消化杂志,2009,17(14):1432-1436.