参考文献
[1] 李小龙.高速机动目标长时间相参积累算法研究[D].成都:电子科技大学,2017.
[2] Sun Z, Li X, Yi W, et al. A coherent detection and velocity estimation algorithm for the high-speed target based on the modified location rotation transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(7): 2346-2361.
[3] Li X, Sun Z, Yi W, et al. Radar detection and parameter estimation of high-speed target based on MART-LVT[J]. IEEE Sensors Journal, 2018, 19(4): 1478-1486.
[4] Li X, Sun Z, Zhang T, et al. WRFRFT-based coherent detection and parameter estimation of radar moving target with unknown entry/departure time[J]. Signal Processing, 2020, 166: 107228.
[5] Li X, Sun Z, Yeo T S. Computational efficient refocusing and estimation method for radar moving target with unknown time information[J]. IEEE Transactions on Computational Imaging, 2020, 6: 544-557.
[6] Carter P H, Pines D J, Rudd L V E. Approximate performance of periodic hypersonic cruise trajectories for global reach[J]. Journal of Aircraft, 1998, 35(6): 857-867.
[7] Li X, Sun Z, Yeo T S, et al. STGRFT for detection of maneuvering weak target with multiple motion models[J]. IEEE Transactions on Signal Processing, 2019, 67(7): 1902-1917.
[8] Kong L, Li X, Cui G, et al. Coherent integration algorithm for a maneuvering target with high-order range migration[J]. IEEE Transactions on Signal Processing, 2015,63(17): 4474-4486.
[9] Li X, Kong L, Cui G, et al. A low complexity coherent integration method for maneuvering target detection[J]. Digital Signal Processing, 2016, 49: 137-147.
[10] Li X, Cui G, Yi W, et al. A fast maneuvering target motion parameters estimation algorithm based on ACCF[J]. IEEE Signal Processing Letters, 2015, 22(3): 270-274.
[11] Li X, Kong L, Cui G, et al. ISAR imaging of maneuvering target with complex motions based on ACCF-LVD[J]. Digital Signal Processing, 2015, 46: 191-200.
[12] Li X, Kong L, Cui G, et al. A fast detection method for maneuvering target in coherent radar[J]. IEEE Sensors Journal, 2015, 15(11): 6722-6729.
[13] Li X, Kong L, Cui G, et al. Detection and RM correction approach for manoeuvring target with complex motions[J]. IET Signal Processing, 2016, 11(4): 378-386.
[14] Li X, Yang Y, Sun Z, et al. Multi-frame integration method for radar detection of weak moving target[J]. IEEE Transactions on Vehicular Technology, 2021. DOI:10.1109/TVT.2021.3066516.
[15] Li X, Cui G, Kong L, et al. High speed maneuvering target detection based on joint keystone transform and CP function[C]//2014 IEEE Radar Conference. NJ: IEEE,2014: 436-440.
[16] Li X, Yi W, Cui G, et al. Radon-generalized ambiguity function and its application for maneuvering target detection[C]//2016 IEEE Radar Conference (RadarConf). NJ:IEEE, 2016: 1-6.
[17] Li X, Sun Z, Yi W, et al. Computationally efficient coherent detection and parameter estimation algorithm for maneuvering target[J]. Signal Processing, 2019, 155:130-142.
[18] Sun Z, Li X, Yi W, et al. Detection of weak maneuvering target based on keystone transform and matched filtering process[J]. Signal Processing, 2017, 140: 127-138.
[19] Li X, Cui G, Yi W, et al. Manoeuvring target detection based on keystone transform and Lv's distribution[J]. IET Radar, Sonar & Navigation, 2016, 10(7): 1234-1242.
[20] Li X, Kong L, Cui G, et al. CLEAN-based coherent integration method for high-speed multi-targets detection[J]. IET Radar, Sonar & Navigation, 2016, 10(9):1671-1682.
[21] Sun Z, Li X, Cui G, et al. Hypersonic target detection and velocity estimation in coherent radar system based on scaled radon Fourier transform[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6525-6540.
[22] 于小龙.高速运动目标检测算法研究[D].南京:南京理工大学,2014:1-4.
[23] 吴仁彪,马頔,李海.基于Radon-MDCFT的空间高速机动目标检测与参数估计方法[J]. 系统工程与电子技术,2016, 38(3): 493-500.
[24] Li X, Cui G, Yi W, et al. Coherent integration for maneuvering target detection based on Radon-Lv's distribution[J]. IEEE Signal Processing Letters, 2015, 22(9): 1467-1471.
[25] Moyer L R, Spak J, Lamanna P. A multi-dimensional Hough transform-based track-before-detect technique for detecting weak targets in strong clutter backgrounds[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011,47(4): 3062-3068.
[26] Sun Y, Willett P. Hough transform for long chirp detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 553-569.
[27] Carlson B D, Evans E D, Wilson S L. Search radar detection and track with the Hough transform (Ⅰ): System concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102-108.
[28] Carlson B D, Evans E D, Wilson S L. Search radar detection and track with the Hough transform (Ⅱ): Detection statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 109-115.
[29] Carlson B D, Evans E D, Wilson S L. Search radar detection and track with the Hough transform (Ⅲ): Detection performance with binary integration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 116-125.
[30] Carretero-Moya J, Gismero-Menoyo J, Asensio-Lopez A, et al. Application of the radon transform to detect small-targets in sea clutter[J]. IET Radar, Sonar & Navigation, 2009, 3(2): 155-166.
[31] Rey M T, Tunaley J K, Folinsbee J T, et al. Application of Radon transform techniques to wake detection in Seasat-A SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 553-560.
[32] Reed I S, Gagliardi R M, Shao H M. Application of three-dimensional filtering to moving target detection[J]. IEEE Transactions on Aerospace and Electronic Systems,1983(6): 898-905.
[33] Reed I S, Gagliardi R M, Stotts L B. Optical moving target detection with 3-D matched filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988,24(4): 327-336.
[34] Reed I S, Gagliardi R M, Stotts L B. A recursive moving-target-indication algorithm for optical image sequences[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3): 434-440.
[35] Orlando D, Venturino L, Lops M, et al. Space-time adaptive algorithms for track-before-detect in clutter environments[C]//2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009). NJ: IEEE, 2009: 1-6.
[36] Orlando D, Venturino L, Lops M, et al. Track-before-detect strategies for STAP radars[J]. IEEE Transactions on Signal Processing, 2009, 58(2): 933-938.
[37] Grossi E, Lops M. Sequential along-track integration for early detection of moving targets[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3969-3982.
[38] Yi W, Morelande M R, Kong L, et al. An efficient multi-frame track-before-detect algorithm for multi-target tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 421-434.
[39] Boers Y, Driessen J N. Particle filter based detection for tracking[C]//Proceedings of the 2001 American Control Conference. (Cat. No. 01CH37148). NJ: IEEE, 2001, 6:4393-4397.
[40] Boers Y, Driessen H. A particle-filter-based detection scheme[J]. IEEE Signal Processing Letters, 2003, 10(10): 300-302.
[41] 杨小军,潘泉,张洪才.基于粒子滤波和似然比的联合检测前跟踪算法[J].控制与决策,2005,20(7):837-840.
[42] 龚亚信,杨宏文,胡卫东,等.基于粒子滤波的弱目标检测前跟踪算法[J].系统工程与电子技术,2007,29(12):2143-2148.
[43] Yi W, Morelande M R, Kong L, et al. A computationally efficient particle filter for multitarget tracking using an independence approximation[J]. IEEE Transactions on Signal Processing, 2012, 61(4): 843-856.
[44] 焦智超.雷达高速机动目标长时间积累方法研究[D].成都:电子科技大学,2016.
[45] 田静.雷达机动目标长时间积累信号处理算法研究[D].北京:北京理工大学,2014.
[46] 徐冠杰.雷达信号长时间积累对微弱目标检测的研究[D].西安:西安电子科技大学,2011.
[47] 蒋千.高速目标雷达信号长时间积累技术研究[D].成都:电子科技大学,2013.
[48] Skolnik M I. Introduction to Radar Systems[M]. 3rd ed. New York: McGraw-Hill,2002.
[49] 张国华.临近空间目标探测分析[J].现代雷达,2011,33(6):13-15.
[50] 赵海洋,刘书雷,吴集,等.国外高超声速临近空间飞行器技术进展[J].飞航导弹,2013(9):12-17.
[51] 吕航,何广军,张作帅,等.临近空间高超声速飞行器发展现状及其跟踪技术[J].飞航导弹,2013(9):18-21.
[52] 李亚轲,梁晓庚,郭正玉.临近空间攻防对抗技术发展研究[J].四川兵工学报,2013,34(5):24-26.
[53] 汪连栋,曾勇虎,高磊,等.临近空间高超声速目标雷达探测技术现状与趋势[J].信号处理,2014,30(1):72-85.
[54] 金风.三倍音速的“黑鸟”——美国SR-71战略侦察机[J].航空世界,2001(11):45-46.
[55] 李益翔.美国高超声速飞行器发展历程研究[D].哈尔滨:哈尔滨工业大学,2016.
[56] 孙智.临近空间高速目标长时间相参处理算法研究[D].成都:电子科技大学,2020.
[57] 鲁芳.美军高超武器乘波者X-51A的独特方案和技术透析[J].国防科技,2010,31(3):9-13.
[58] 姚源,陈萱.美国发布SR-72高超声速飞机概念[J].中国航天,2013(12):39-41.
[59] 甄华萍,蒋崇文.高超声速技术验证飞行器HTV-2综述[J].飞航导弹,2013(6):7-13.
[60] 严飞,牛文,叶蕾.美空军积极推进高速打击武器(HSSW)项目[J].战术导弹技术,2013(3):9-12.
[61] 杨磊,牛文.美国临近空间快速打击武器技术发展[J].战术导弹技术,2013(6):12-19.
[62] 金欣,梁伟泰,王俊.反临近空间目标作战的若干问题思考[J].现代防御技术,2013,41(6):1-7.
[63] 潘杰.空中杀手 美国B-3高超音速战略轰炸机[J].现代兵器,2005(1):18-20.
[64] 董天发.临近空间高速高机动目标跟踪算法研究[D].成都:电子科技大学,2015.
[65] Perry R P, Dipietro R C, Fante R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188-200.
[66] Zhang S, Zhang W, Wang Y. Multiple targets’ detection in terms of Keystone transform at the low SNR level[C]//2008 International Conference on Information and Automation. NJ: IEEE, 2008: 1-4.
[67] Yuan S, Wu T, Mao M, et al. Application research of keystone transform in weak high-speed target detection in low-PRF narrowband chirp radar[C]//2008 9th International Conference on Signal Processing. NJ: IEEE, 2008: 2452-2456.
[68] Zhu D, Li Y, Zhu Z. A keystone transform without interpolation for SAR ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):18-22.
[69] Xu J, Yu J, Peng Y N, et al. Radon-Fourier transform for radar target detection (Ⅰ): Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186-1202.
[70] Xu J, Yu J, Peng Y N, et al. Radon-Fourier transform for radar target detection (Ⅱ): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2473-2489.
[71] Yu J, Xu J, Peng Y N, et al. Radon-Fourier transform for radar target detection (Ⅲ): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991-1004.
[72] Rao X, Tao H, Su J, et al. Axis rotation MTD algorithm for weak target detection[J].Digital Signal Processing, 2014, 26: 81-86.
[73] Qian L, Xu J, Sun W, et al. Sub-aperture based blind speed side lobe(BSSL)suppression in Radon Fourier transform(RFT)[C]//2012 IEEE 11th International Conference on Signal Processing. NJ: IEEE, 2012, 3: 1880-1884.
[74] Zheng J, Su T, Zhu W, et al. Radar high-speed target detection based on the scaled inverse Fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(3): 1108-1119.
[75] Zheng J, Su T, Liu H, et al. Radar high-speed target detection based on the frequency-domain deramp-keystone transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 9(1): 285-294.
[76] Niu Z, Zheng J, Su T, et al. Fast implementation of scaled inverse Fourier transform for high-speed radar target detection[J]. Electronics Letters, 2017, 53(16): 1142-1144.
[77] Li X, Cui G, Yi W, et al. Sequence-reversing transform-based coherent integration for high-speed target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1573-1580.
[78] Li H, Ma D, Wu R. A low complexity algorithm for across range unit effect correction of the moving target via range frequency polynomial-phase transform[J]. Digital Signal Processing, 2017, 62: 176-186.
[79] Zhang Y, Xu H, Zhang X P, et al. A wideband/narrowband fusion-based motion estimation method for maneuvering target[J]. IEEE Sensors Journal, 2019, 19(18):8095-8106.
[80] Qian L, Xu J, Xia X, et al. Wideband-scaled Radon-Fourier transform for high-speed radar target detection[J]. IET Radar, Sonar & Navigation, 2014, 8(5): 501-512.
[81] Xu X, Liao G, Yang Z, et al. Moving-in-pulse duration model-based target integration method for HSV-borne high-resolution radar[J]. Digital Signal Processing, 2017, 68:31-43.
[82] Su J, Xing M, Wang G, et al. High-speed multi-target detection with narrowband radar[J]. IET Radar, Sonar & Navigation, 2010, 4(4): 595-603.
[83] Xing M, Su J, Wang G, et al. New parameter estimation and detection algorithm for high speed small target[J]. IEEE Transactions on Aerospace and Electronic Systems,2011, 47(1): 214-224.
[84] Tao R, Zhang N, Wang Y. Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar[J]. IET Radar, Sonar & Navigation, 2011, 5(1): 12-22.
[85] Li X L, Cui G L, Yi W, et al. An efficient coherent integration method for maneuvering target detection[C]// IET International Radar Conference 2015,Hangzhou: IET, 2015: 1-6.
[86] Rao X, Tao H, J. Su, et al. Detection of constant radial acceleration weak target via IAR-FRFT[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4):3242-3253.
[87] Sun G, Xing M, Wang Y, et al. Improved ambiguity estimation using a modified fractional radon transform[J]. IET Radar, Sonar & Navigation, 2011, 5(4): 489-495.
[88] Tian J, Cui W, Shen Q, et al. High-speed maneuvering target detection approach based on joint RFT and keystone transform[J]. Science China Information Sciences,2013, 56(6): 1-13.
[89] Chen X, Guan J, Liu N, et al. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939-953.
[90] Chen X, Guan J, Liu N, et al. Detection of a low observable sea-surface target with micromotion via the Radon-linear canonical transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1225-1229.
[91] Huang P, Liao G, Yang Z, et al. A fast SAR imaging method for ground moving target using a second-order WVD transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 1940-1956.
[92] 章建成,苏涛,吕倩.基于运动参数非搜索高速机动目标检测[J]. 电子与信息学报,2016,38(6):1460-1467.
[93] Huang P, Liao G, Yang Z, et al. An approach for refocusing of ground moving target without target motion parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 336-350.
[94] Zheng J, Zhang J, Xu S, et al. Radar detection and motion parameters estimation of maneuvering target based on the extended keystone transform[J]. IEEE Access, 2018,6: 76060-76074.
[95] Xu J, Xia X, Peng S, et al. Radar maneuvering target motion estimation based on generalized Radon-Fourier transform[J]. IEEE Transactions on Signal Processing,2012, 60(12): 6190-6201.
[96] Qian L, Xu J, Xia X, et al. Fast implementation of generalised Radon-Fourier transform for manoeuvring radar target detection[J]. Electronics Letters, 2012, 48(22): 1427-1428.
[97] Qian L, Xu J, Sun W, et al. Efficient approach of generalized RFT based on PSO[C]//2012 IEEE 12th International Conference on Computer and Information Technology,Chengdu, 2012: 511-516.
[98] Chen X, Huang Y, Liu N, et al. Radon-fractional ambiguity function-based detection method of low-observable maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 815-833.
[99] Chen X, Guan J, Huang Y, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225-2240.
[100] Rao X, Tao H, Xie J, et al. Long-time coherent integration detection of weak manoeuvring target via integration algorithm, improved axis rotation discrete chirp-Fourier transform[J]. IET Radar, Sonar & Navigation, 2015, 9(7): 917-926.
[101] Huang P, Liao G, Yang Z, et al. Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 4013-4026.
[102] Huang P, Liao G, Yang Z, et al. An approach for refocusing of ground fast-moving target and high-order motion parameter estimation using radon-high-order time-chirp rate transform[J]. Digital Signal Processing, 2016, 48: 333-348.
[103] Li X, Cui G, Yi W, et al. Radar maneuvering target detection and motion parameter estimation based on TRT-SGRFT[J]. Signal Processing, 2017, 133: 107-116.
[104] Zheng J, Su T, Zhang L, et al. ISAR imaging of targets with complex motion based on the chirp rate-quadratic chirp rate distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7276-7289.
[105] Zheng J, Su T, Zhu W, et al. ISAR imaging of nonuniformly rotating target based on a fast parameter estimation algorithm of cubic phase signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4727-4740.
[106] Li X, Cui G, Kong L, et al. Fast non-searching method for maneuvering target detection and motion parameters estimation[J]. IEEE Transactions on Signal Processing, 2016, 64(9): 2232-2244.
[107] Li X, Cui G, Yi W, et al. Fast coherent integration for maneuvering target with high-order range migration via TRT-SKT-LVD[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2803-2814.