机器学习及其应用
上QQ阅读APP看书,第一时间看更新

前言

人类文明由早期农耕时代经历漫长演化进入工业时代,再由工业时代进一步发展迈入当今的信息时代。数字化、网络化和智能化是信息时代的基本特征,将给人类文明带来科学技术水平上的巨大提升,令社会的方方面面产生深刻的变革,使得当代人们的生活和工作更加舒适、便捷。目前,作为引领信息社会发展动力的信息技术已经历了数字化和网络化阶段,正朝着智能化方向快速发展,人工智能技术在全社会得到前所未有的重视和广泛应用,并以前所未有的速度向前飞跃发展。为顺应时代发展潮流和把握发展机遇,我国及时制定并推出了新一代人工智能发展规划,把人工智能发展放在国家战略层面进行系统布局,使得人工智能成为新一轮产业变革的核心驱动力。目前,人工智能的理论研究和应用开发是一个非常重要的优先发展方向。

人工智能作为人脑器官的延伸,主要目标是通过计算机模拟人类大脑的某些思维方式或智能行为,如推理、证明、识别、感知、认知、理解、学习等思维方式或活动,使得计算机能够像人类一样进行思考。从外部环境中获得知识和经验的学习能力是人类的一项基本思维能力,机器学习要解决的问题就是如何使得机器具有与人类类似的学习能力,使得机器系统能够较好地了解外部环境并能够适应外部环境的变化。机器学习为人工智能系统提供了基础性的核心算法支撑,人工智能系统主要使用机器学习技术解析外部环境数据,从数据中获取知识和模型参数,获得可用于决策或预测的数学模型。要想学好人工智能,首先必须牢固掌握机器学习的基础理论与应用技术。

机器学习的主要目标是通过计算手段从经验数据等先验信息中获得一个具有较好泛化性能的数学模型,并使用该模型完成预测、分类和聚类等机器学习任务。因此,机器学习的研究对象主要是从经验数据等先验信息中产生或构造模型的训练学习算法,或者说机器学习是一门关于训练学习算法设计理论与应用技术的学问。我们知道,算法设计是一种思维的艺术,需要一定的抽象思维能力和数学知识。机器学习算法更是如此,不仅涉及微积分、数理逻辑、数理统计、矩阵计算、图论等数学知识,而且涉及众多最优化理论与方法,这些为广大初学者掌握机器学习知识带来一定困难。为较好地满足广大读者系统地掌握机器学习入门性基础理论与应用技术的需要,本书的编写着重考虑如下两个要点:

第一,注重知识体系的完备性。作为人工智能的核心技术,机器学习随着人工智能的产生而产生并随着人工智能理论的发展而发展,目前已形成一个非常庞大且正在快速延伸发展的知识体系,众多学习算法精彩纷呈、目不暇接、不胜枚举。本书通过深度凝练机器学习的现有知识体系,构造一套相对完备的入门级机器学习基础理论与应用技术,在基本涵盖连接学习、符号学习和统计学习这三种基本学习类型的基础上,注重突出对基本理论与关键技术的介绍和讨论。

第二,强调可读性和可理解性。本书站在高年级本科生和低年级硕士研究生的思维角度编写,在保证表达准确的前提下,尽可能用朴实的语言深入浅出地介绍机器学习理论及相关算法设计技术,尽可能细致地阐述理论与算法的思想内涵和本质。通过学习书中实际算例的具体演算过程,读者能够对机器学习理论与算法有更加清晰、全面的理解。需要说明的是,本书并没有为了增加可读性而降低应有的内容深度,只是通过比较恰当的方式把相关知识表达得更加清楚明白,使得广大读者能够通过自己的努力就可以比较轻松地掌握机器学习的基本理论与应用技术。

本书比较系统地介绍机器学习的入门性基础理论与应用技术,内容主要包括机器学习的基本知识、模型估计与优化的基本方法、监督学习和无监督学习方法、集成学习、强化学习方法、神经网络与深度学习方法,将机器学习的经典内容与深度学习等前沿内容有机地结合在一起,形成一套相对完整、统一的知识体系,并在每个章节穿插相应的应用实例,使得广大读者不但能够较好地掌握机器学习的基本理论,而且能够比较系统地掌握其应用技术,为今后的工作和进一步学习打下扎实的理论与应用基础。全书共包含如下9章内容:

第1章和第2章是全书最基础的知识内容,主要为后续机器学习具体方法的介绍提供必备的理论和技术基础。第1章主要介绍机器学习的基本知识,包括机器学习基本概念、误差分析、发展历程及需要解决的基本问题;第2章主要介绍模型估计与优化的基本方法,包括模型的参数估计、模型优化的基本概念与方法,以及若干模型正则化策略。

第3章至第6章比较系统地介绍传统机器学习理论与方法。第3章主要介绍监督学习模型与算法,包括线性模型、决策树模型、贝叶斯模型和支持向量机模型;第4章主要介绍聚类分析、主分量分析、稀疏编码等无监督学习的基本理论和方法;第5章主要介绍集成学习方法,包括Bagging集成学习和Boosting集成学习方法;第6章主要介绍强化学习方法,包括基本强化学习和示范强化学习方法。

第7章至第9章比较系统地介绍神经网络与深度学习方法。第7章主要介绍神经网络与深度学习的基本知识,包括神经网络的基本概念、基本模型和常用模型,以及深度学习的基本理论和模型训练方法;第8章主要介绍几种常用的深度网络模型与训练范式,包括深度卷积网络、深度循环网络和生成对抗网络;第9章主要介绍深度强化学习理论与方法,包括基于价值的学习和基于策略的学习。

限于篇幅,本书未将半监督学习、多示例学习、流形学习、迁移学习、度量学习、元学习、分布式学习等相对比较专门的机器学习前沿研究内容纳入介绍范围,读者可以查阅相关专著、学术论文或技术报告。事实上,如果牢固掌握了本书所介绍的机器学习基本知识内容,那么进一步学习和研究这些前沿知识就不是一件很难的事情。

本书由汪荣贵、杨娟、薛丽霞编著。感谢研究生叶萌、朱正发、汤明空、李文静、俞鹏飞、姚旭晨、陈龙、江迪、郑岩、韩梦雅、邓韬、王静、龚毓秀、李明熹、董博文、麻可可、李懂、刘兵,以及本科生孙旭等同学提供的帮助,感谢合肥工业大学计算机与信息学院、合肥工业大学人工智能学院、机械工业出版社的大力支持。

由于时间仓促,书中难免存在不妥之处,敬请读者不吝指正。

编者

2019年6月