![分数阶系统分析与控制研究](https://wfqqreader-1252317822.image.myqcloud.com/cover/826/40107826/b_40107826.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.4 分数阶微积分的性质
(1)分数阶积分算子和微分算子都是线性算子
![](https://epubservercos.yuewen.com/F1FDA2/20862582908962806/epubprivate/OEBPS/Images/41299_34_1.jpg?sign=1739897400-qk00kUpcplpMW705vG1dH3ueGHVM2x30-0-f172cd1a541c68840126674bdbc6b56c)
(2)分数阶微分算子满足叠加指数定律、交换律,即
![](https://epubservercos.yuewen.com/F1FDA2/20862582908962806/epubprivate/OEBPS/Images/41299_34_2.jpg?sign=1739897400-Ziv78pthPOm30RE2sAV3GHShjiYgEtIZ-0-87b599291915faa75c6a61ac996e5464)
(3)当时,有
![](https://epubservercos.yuewen.com/F1FDA2/20862582908962806/epubprivate/OEBPS/Images/41299_34_4.jpg?sign=1739897400-OYhALRiSviXVAWhdUsEXgbiq2oBKOjiI-0-57cc5d81b82ccda948518decf425e951)
(4)分数阶微分的 Leibniz 定理:如果函数 f (t)在规定的区间[a, t]上是连续的,φ(t)在相同区间内可导且有n+1阶连续导数,则有
![](https://epubservercos.yuewen.com/F1FDA2/20862582908962806/epubprivate/OEBPS/Images/41299_34_5.jpg?sign=1739897400-yWDSAtnBpEUCAlwontOg8DVxIKarqRnT-0-3e8b5c315a670f6f5222ea4c2690ce87)
如果式(2-35)中的n满足n≥q+1,有下列形式变换
![](https://epubservercos.yuewen.com/F1FDA2/20862582908962806/epubprivate/OEBPS/Images/41299_35_1.jpg?sign=1739897400-LDLzLwEeHf82eRuRSvrkS0XhPW8WuBep-0-0148a82f6adb96d1948258723224870d)
(5)带有参数变量积分的分数阶微分表达式为
![](https://epubservercos.yuewen.com/F1FDA2/20862582908962806/epubprivate/OEBPS/Images/41299_35_2.jpg?sign=1739897400-LMoocPHnIZQdYghj1nuqhgpj69ctQxky-0-9d727e7568c4d1dc08c15f2a0731e80a)
(6)当分数阶阶数q=n且n为整数时,与整数阶微分相同。当分数阶阶数q=0时[9],有
![](https://epubservercos.yuewen.com/F1FDA2/20862582908962806/epubprivate/OEBPS/Images/41299_35_3.jpg?sign=1739897400-DHRQh4JiJRmFmBtUMNTGFNjQpJ68PLzD-0-c8057434b58f1089c9a12fbcf76eb535)
(7)复合函数φ(t)=F [h(t)]的分数阶微分为
![](https://epubservercos.yuewen.com/F1FDA2/20862582908962806/epubprivate/OEBPS/Images/41299_35_4.jpg?sign=1739897400-i0FxWV1eYCoyWP6gUi3A1pL5Q13qSysI-0-25058b8faf120f94d2615905cab61045)
(8)Caputo型和R-L型分数阶微分满足关系式
![](https://epubservercos.yuewen.com/F1FDA2/20862582908962806/epubprivate/OEBPS/Images/41299_35_5.jpg?sign=1739897400-5ry5IP8wk3r3mbHBoT9vXDLw0RSLWIuj-0-0c65fa182acf4b764d09ae36e1668135)