参考文献
[1] D.Matignon.Stability properties for generalized fractional differential system[J].Proceeding of Fractional Differential Systems:Models,Methods and Application,1998(5):145-158.
[2] Y.Li,Y.Q.Chen,I.Podlubny.Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability[J].Computers and Mathematics with Applications,2010(59):1810-1821.
[3] J.C.Trigeassou,N.Maamri,J.Sabatier,A.Oustaloup.State variables and transients of fractional order differential systems[J].Computers and Mathematics with Applications,2012(64):3117-3140.
[4] B.J.Lune.Three-parameter tunable tilt-integral derivative (TID) controller[P].US Patent US5371670,1994.
[5] A.Oustaloup,B.Mathieu,P.Lanusse.The CRONE control of resonant plants:Application to a flexible transmission[J].European Journal of Control,1995,1(2):275-283.
[6] I.Podlubny.Fractional-order systems and controllers[J].IEEE Transactions on Automatic Control,1994,44(1):208-214.
[7] I.Podlubny.Fractional Differential Equations[M].Academic press,1999.
[8] 王振滨,曹广益.分数微积分的两种系统建模方法[J].系统仿真学报,2004,16(4):810-812.
[9] M.P.Aghababa,H.P.Aghababa.The rich dynamics of fractional-order gyros applying a fractional controller[J].Proceedings of the Institution of Mechanical Engineering,Part I:Journal of System and Control Engineering,2013,227:588-601.
[10] C.Yin,S.M.Zhong,W.F.Chen.Design of sliding mode controller for a class of fractional-order chaotic system[J].Communication in Nonlinear Science and Numerical Simulation,2012,17:356-366.
[11] R.X.Zhang,S.P.Yang.Robust synchronization of two different fractional-order chaotic systems with unknown parameters using adaptive sliding mode approach[J].Nonlinear Dynamics,2013,71:269-278.
[12] H.S.Ahn,Y.Q.Chen.Iterative learning control for multi-agent formation[C].ICCAS-SCIE,2009:3111-3116.
[13] F.Jiang,L.Wang.Finite-time information consensus for multi-agent systems with fixed and switching topologies[J].Physica D:Nonlinear Phenomena,2009,238(16):1550-1360.
[14] F.Xiao,L.Wang,J.Chen,et al.Finite-time formation control for multi-agent systems[J].Automatica,2009,45(11):2605-2611.
[15] S.P.Yang,J.X.Xu,D.Q.Huang.Iterative learning control for multi-agent systems consensus tracking[C].51st IEEE Conference on Decision and Control,2012:4672-4677.
[16] M.P.Aghababa,M.Borjkhani.Chaotic fractional-order for muscular blood vessel and its control via fractional control scheme[J].Complexity,2014,20(2):37-46.
[17] 张小芝.管理学中多属性决策问题与分数阶算子方法的研究[D].南昌:南昌大学,2014.
[18] M.P.Aghababa.Fractional modelling and control of a complex nonlinear energy supply-demand system[J].Complexity,2015,20(6):74-86.
[19] 杨晴霞,曹秉刚.一种估计锂电池充电状态的分数阶阻抗模型[J].西安交通大学学报,2015,49(8):128-132.
[20] 郑伟佳,王孝洪,皮佑国.基于输出误差的永磁同步电机分数阶建模[J].华南理工大学学报(自然科学版),2015,43(9):8-13.
[21] 杜兰,史蕙若,李林森,等.基于分数阶傅里叶变换的窄带雷达飞机目标回波特征提取方法[J].电子与信息学报,2016,12(12):3093-3099.
[22] 王虎.时滞分数阶 Hopfield 神经网络的动力学分析[D].北京:北京交通大学,2015.
[23] 李博,谢巍.基于自适应分数阶微积分的图像去噪与增强算法[J].系统工程与电子技术,2016,1:185-192.
[24] 袁野.基于分数阶傅里叶变换的毫米波雷达检测系统[D].成都:西南交通大学,2019.
[25] N.Wiener.Hermitian polynomials and Fourier analysis[J].Studies in Applied Mathematics,1929,8:70-73.
[26] E.U.Condon.Immersion of the Fourier transform in a continuous group of functional transformations[J].Proceedings of the National Academy of Sciences of the United States of America,1937,23(3):158-164.
[27] V.Bargmann.On a Hilbert space of analytic function and an associated integral transform[J].Communications on Pure and Applied Mathematics,2010,14(3):187-214.
[28] V.Namias.The fractional order Fourier transform and its application to quantum mechanics[J].IMA Journal of Applied Mathematics,1980.
[29] L.B.Almeida.The fractional Fourier transform and time-frequency representations[J].IEEE Transactions on Signal Processing,2002,42(11):3084-3091.
[30] H.M.Ozaktas,O.Arikan,et al.Digital computation of the fractional Fourier transform[J].IEEE Transactions on Signal Processing,1996,44(9):2141-2150.
[31] I.Djurovic,S.Stankovic,I.Pitas.Digital watermarking in the fractional Fourier transformation domain[J].Journal of Network and Computer Applications,2001,24(2):167-173.
[32] 董永强,陶然,周思永,等.含未知参数的多分量 Chirp 信号的分数阶傅里叶分析[J].北京大学学报,1999,19(5):612-616.
[33] L.Qi,R.Tao,S.Y.Zhou,et al.Detection and parameter estimation if multicomponent LFM signal based on the fractional Fourier transform[J].Science in China,2004,47(2):184-198.
[34] O.Akay,G.F.Boudreaux-Bartels.Fractional convolution and correlation via operator methods and an application to detection of Linear FM signals[J].IEEE Transactions on Signal Processing,2001,49(5):979-993.
[35] 周刚毅,叶中付.线性调频信号的调频斜率估计方法[J].中国科学技术大学学报,2003,33(1):34-38.
[36] 陶然,邓兵,王越.分数阶 Fourier 变换在信号处理领域的研究进展[J].中国科学E辑信息科学,2006,36(2):113-126.
[37] 邓兵,陶然,齐林,等.分数阶Fourier变换与时频滤波[J].系统工程与电子技术,2004,26(10):1357-1359.
[38] S.G.Shin,S.I.Jin,S.Y.Shin,et al.Optical neural network using fractional Fourier transform,log-likelihood,and parallelism[J].Optics Communications,1998,153:218-222.
[39] B.Barshan,B.Ayrulu.Fractional Fourier transform pre-processing for neural networks and its application to object recognition[J].Neural Networks:the Official Journal of the International Neural Network Society,2002,15(1):131-140.
[40] I.S.Yetik,A.Nehorai.Beamforming using the fractional Fourier transform[J].IEEE Transactions on Signal Processing,2003,51(6):1663-1668.
[41] 陶然,周云松.基于分数阶傅里叶变换的宽带线性调频信号波达方向估计新算法[J].北京理工大学学报,2005,25(10):895-899.
[42] S.Jang,W.Choi,T.K.Sarkar,et al.Exploiting early time response using the fractional Fourier transform for analyzing transient Radar returns[J].IEEE Transactions on Antennas and Propagation,2004,52(11):3109-3121.
[43] I.I.Jouny.Radar backscatter analysis using fractional Fourier transform[C].Antennas and Propagation Society International Symposium,2004.
[44] 董永强,陶然,周思永,等.基于分数阶傅里叶变换的SAR运动目标检测与成像[J].兵工学报,1999,20(2):132-136.
[45] H.B.Sun,G.S.Liu,H.Gu,et al.Application of the fractional Fourier transform to moving target detection in airborne SAR[J].IEEE Transactions on Aerospace and Electronic System,2002,38(4):1416-1424.
[46] M.G.Ertosun,H.Atli,H.M.Ozaktas,et al.Complex signal recovery from multiple fractional Fourier-transform intensities[J].Applied Optics,2005,44(23):4902-4908.
[47] 杨文涛.分数阶傅里叶变换在数字图像处理中的应用[D].武汉:华中科技大学,2007.