TFT-LCD原理与设计(第二版)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

本章参考文献

[1] Sangwon Lee, Sungwook Park, Sungchul Kim, et.al. Extraction of Subgap Density of States in Amorphous InGaZnO Thin-Film Transistors by Using Multifrequency Capacitance–Voltage Characteristics[J]. IEEE Electron Device Letters, 2010, 31(3):231-233.

[2] J. Zhang, X. F. Li, J. G. Lu, et.al. Performance and stability of amorphous InGaZnO thin film transistors with a designed device structure[J]. Journal of Applied Physics, 2011, 110(8):084509-084509-5.

[3] Huang Xiao-Ming, Wu Chen-Fei, Lu Hai, et.al. Impact of Interfacial Trap Density of States on the Stability of Amorphous InGaZnO-Based Thin-Film Transistors[J]. Chinese Physics Letters, 2012, 29(6):67302-67305.

[4] Sung-Hwan Choi, Min-Koo Han. Effect of channel widths on negative shift of threshold voltage, including stress-induced hump phenomenon in InGaZnO thin-film transistors under high-gate and drain bias stress[J]. Applied Physics Letters, 2012, 100(4):103515.

[5] J. E. Lilienfield, Method and Apparatus for Controlling Electric Currents[P]. US 1745175, 1930. 1745175. 1930-01-28.

[6] Weimer P K. The TFT A New Thin-Film Transistor[J]. Proceedings of the Ire, 1962, 50(6):14621469.

[7] Klasens H A, Koelmans H. A tin oxide field-effect transistor[J]. Solid-State Electronics, 1964, 7(9):701-702.

[8] Comber P G L, Spear W E, Ghaith A. Amorphous-silicon field-effect device and possible application[J]. Electronics Letters, 1979, 15(6):179-181.

[9] Garnier F, Horowitz G, Peng X, et al. An all-organic “soft” thin film transistor with very high carrier mobility[J]. Advanced Materials, 2010, 2(12):592-594.

[10] Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors[J]. Applied Physics Letters, 2003, 82(5):733-735.

[11] Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.[J]. Science, 2003, 300(5623):1269-1272.

[12] Nomura K, Ohta H, Takagi A, et al. Room-Temperature Fabrication of Transparent Flexible ThinFilm Transistors Using Amorphous Oxide Semiconductors[J]. Nature, 2004, 432(7016):488-492.

[13] Yamazaki S, Matsuo T. Invited Paper: Future Possibilities of Crystalline Oxide Semiconductor, Especially C-Axis-Aligned Crystalline IGZO[C]//SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd, 2015, 46(1):673-676.

[14] Fortunato E, Barquinha P, Martins R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances[J]. Advanced Materials, 2012, 24(22):2945-2986.

[15] Kagan C R, Andry P. 薄膜晶体管(TFT)及其在平板显示中的应用[M]. 北京:电子工业出版社, 2008.

[16] Aoki, H. Dynamic characterization of a-Si TFT-LCD pixels[J]. IEEE Transactions on Electron Devices, 1996, 43(1):31-39.

[17] Wang I S, Lee G C, Kim T H, et al. Dynamic Pixel Models for a-Si TFT-LCD and Their Implementation in SPICE[J]. ETRI Journal, 2012, 34(4):633-636.

[18] Howard W E. Limitations and prospects of a-Si:H TFTs[J]. Journal of the Society for Information Display, 1995, 3(3):127.

[19] Kaneko Y, Sasano A, Tsukada T. Analysis and design of a-Si TFT/LCD panels with a pixel model[J]. IEEE Transactions on Electron Devices, 1989, 36(12):2953-2958.

[20] Zhu Y, Li M, Yuan J, et al. Simulation of pixel voltage error for a-Si TFT LCD regarding the change in LC pixel capacitance[J]. IEEE Transactions on Electron Devices, 2001, 48(2):218-221.

[21] Masumo K, Kunigita M, Takafuji S, et al. Low temperature fabrication of poly-Si TFT by laser induced crystallization of a-Si[J]. Journal of Non-Crystalline Solids, 1989, 115(1-3): 147-149.

[22] T. Takehara, W. R. Harshbarger, C. C. Tsai, et al. PECVD films for low-temperature poly-Si TFT-LCD applications[J]. Journal of the Society for Information Display, 2001, 9(1):57-60.

[23] A. Suzuki, R. Hashido, T. Urakabe, et al. Low-temperature poly-Si TFT data drivers for an SVGA aSi TFT-LCD panel[J]. Journal of the Society for Information Display, 2001, 9(1):51-56.

[24] Uchikoga S, Ibaraki N. Low temperature poly-Si TFT-LCD by excimer laser anneal[J]. Thin Solid Films, 2001, 383(1-2):19-24.

[25] Mimura A, Konishi N, Ono K, et al. High performance low-temperature poly-Si n-channel TFTs for LCD[J]. IEEE Transactions on Electron Devices, 1989, 36(2):351-359.

[26] Ji-Yong Park, Hye-Hyang Park, Ki-Yong Lee, et al. Design of Sequential Lateral Solidification Crystallization Method for Low Temperature Poly-Si Thin Film Transistors[J]. Japanese Journal of Applied Physics, 2004, 43(4A):1280.

[27] Zhang S, Zhu C, Sin J, et al. A novel ultrathin elevated channel low-temperature poly-Si TFT[J]. IEEE Electron Device Letters, 1999, 20(11):569-571571.

[28] Tatsuki Okamoto, Kazutoshi Morikawa, Atsuhiro Sono, et al. Development of line-shaped optical system for YAG2 omega laser annealing used in the manufacture of low-temperature poly-Si TFT[J]. Applied Optics, 2006, 45(19):4709-4714.

[29] Park J C, Lee H N, Im S. Self-Aligned Top-Gate Amorphous Indium Zinc Oxide Thin-Film Transistors Exceeding Low-Temperature Poly-Si Transistor Performance[J]. ACS Applied Materials & Interfaces, 2013, 5(15):6990-6995.

[30] Kiyoshi Yoneda, Hidenori Ogata, Shinji Yuda, et al. Optimization of low-temperature poly-Si TFT-LCDs and a large-scale production line for large glass substrates[J]. Journal of the Society for Information Display, 2001, 9(3):173-180.

[31] Zeng X, Xu Z, Sin J K O, et al. A novel two-step laser crystallization technique for low-temperature poly-Si TFTs[J]. IEEE Transactions on Electron Devices, 2001, 48(5):1008-1010.

[32] Uraoka Y, Miyashita M, Sugawara Y, et al. Improvement of Reliability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors by Water Vapor Annealing[J]. Japanese Journal of Applied Physics, 2006, 45(7):5657-5661.

[33] Satoshi Inoue, Mutsumi Kimura, Tatsuya Shimoda. Analysis of drain ac stress‐induced hot‐carrier degradation in low‐temperature poly‐Si TFTs[J]. Journal of the Society for Information Display, 2002, 10(1):75-80.

[34] Brotherton S D, Ayres J R, Young N D. Characterisation of low temperature poly-Si thin film transistors[J]. Solid-State Electronics, 1991, 34(7):671-679.

[35] Chang K M, Yang W C, Tsai C P. Electrical characteristics of low temperature polysilicon TFT with a novel TEOS/oxynitride stack gate dielectric[J]. IEEE Electron Device Letters, 2003, 24(8):512-514.

[36] Yin H, Xianyu W, Cho H, et al. Advanced poly-Si TFT with fin-like channels by ELA[J]. IEEE Electron Device Letters, 2006, 27(5):357-359.

[37] Yukiharu Uraoka, Koji Kitajima, Hiroshi Kirimura, et al. Degradation in Low-Temperature Poly-Si Thin Film Transistors Depending on Grain Boundaries[J]. Japanese Journal of Applied Physics, 2005, 44(5A):2895-2901.

[38] Yeh C F, Chen T J, Fan C L, et al. Novel gate dielectric films formed by ion plating for low-temperature-processed polysilicon TFTs[J]. IEEE Electron Device Letters, 1996, 17(9):421-424.

[39] Boer W D. Active Matrix Liquid Crystal Displays [M]. Elsevier, 2005.

[40] Kwon J Y, Kyeong Jeong J. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors[J]. Semiconductor Science &Technology, 2015, 30(2):024002.

[41] Lee H, Yoo J S, Kim C D, et al. Hexagonal a-Si:H TFTs: A New Advanced Technology for Flat-Panel Displays[J]. IEEE Transactions on Electron Devices, 2008, 55(1):329-336.

[42] 于遥, 张晶思, 陈黛黛, 等. PECVD分层结构对提高氢化非晶硅TFT迁移率的影响[J]. 物理学报, 2013, 62(13):138501.

[43] Indluru A, Venugopal S M, Allee D R, et al. Effect of Anneal Time on the Enhanced Performance of a-Si:H TFTs for Future Display Technology[J]. Journal of Display Technology, 2011, 7(6):306-310.

[44] Yu M J, Lin R P, Chang Y H, et al. High-Voltage Amorphous InGaZnO TFT With Al2O3High- k Dielectric for Low-Temperature Monolithic 3-D Integration[J]. IEEE Transactions on Electron Devices, 2016, 63(10).

[45] Kamiya T, Nomura K, Hosono H. Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model[J]. Journal of Display Technology, 2009, 5(12):462-467.

[46] Olziersky A, Barquinha P, A. Vilà, et al. Role of Ga2O3-In2O3-ZnO channel composition on the electrical performance of thin-film transistors[J]. Materials Chemistry & Physics, 2011, 131(12):512-518.

[47] Gee-Sung Chae, Kwang-Nam Kim, Hitoshi Kitagawa, et al. Control of the Step Coverage Behavior of Gate a-SiNx:H[J]. Japanese Journal of Applied Physics, 2000, 39(1):217-221.

[48] Ryu M K, Yang S, Park S H K, et al. High performance thin film transistor with cosputtered amorphous Zn-In-Sn-O channel: Combinatorial approach[J]. Applied Physics Letters, 2009, 95(7):072104.

[49] Kamiya T, Nomura K, Hosono H. Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping[J]. Journal of Display Technology, 2009, 5(12):468-483.

[50] Kamiya T, Nomura K, Hosono H. Present status of amorphous In-Ga-Zn-O thin-film transistors[J]. Science & Technology of Advanced Materials, 2010, 11(4):044305.

[51] Liang T, Zhang X, Zhou X, et al. Effects of N2O Plasma Treatment Time on the Performance of Self-Aligned Top-Gate amorphous oxide Thin Film Transistors[J]. Sid Symposium Digest of Technical Papers, 2017, 48(1):1299-1302.

[52] Park J C, Kim S W, Kim S I, et al. High performance amorphous oxide thin film transistors with selfaligned top-gate structure[C]. Electron Devices Meeting. IEEE, 2010.

[53] Chong E, Chun Y S, Lee S Y. Amorphous silicon-indium-zinc oxide semiconductor thin film transistors processed below 150°C[J]. Applied Physics Letters, 2010, 97(10): 102102.

[54] Heo J, Bok Kim S, Gordon R G. Atomic layer deposited zinc tin oxide channel for amorphous oxide thin film transistors[J]. Applied Physics Letters, 2012, 101(11): 113507.

[55] Iwasaki T, Itagaki N, Den T, et al. Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in InGa-Zn-O system[J]. Applied Physics Letters, 2007, 90(24): 242114.

[56] Fortunato E M C, Pereira L M N, Barquinha P M C, et al. High mobility indium free amorphous oxide thin film transistors[J]. Applied Physics Letters, 2008, 92(22):222103.

[57] Fortunato E, Pereira L, Barquinha P, et al. Oxide semiconductors: Order within the disorder[J]. Philosophical Magazine, 2009, 89(28-30):2741-2758.

[58] Wu J, Han D, Zhao N, et al. High-Performance Fully Transparent Hafnium-Doped Zinc Oxide TFTs Fabricated at Low Temperature[J]. Sid Symposium Digest of Technical Papers, 2014, 45(1):997-1000.

[59] Lan L, Peng J. High-Performance Indium-Gallium-Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide[J]. IEEE Transactions on Electron Devices, 2011, 58(5):1452-1455.

[60] Conley John F. Instabilities in Amorphous Oxide Semiconductor Thin-Film Transistors[J]. IEEE Transactions on Device and Materials Reliability, 2010, 10(4):460-475.

[61] Nomura K, Kamiya T, Ikenaga E, et al. Depth analysis of subgap electronic states in amorphous oxide semiconductor, a-In-Ga-Zn-O, studied by hard x-ray photoelectron spectroscopy[J]. 2011, 109:073726.

[62] Yao J, Xu N, Deng S, et al. Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy[J]. IEEE Transactions on Electron Devices, 2011, 58(4):1121-1126.

[63] Lin C L, Chen F H, Hung C C, et al. New a-IGZO Pixel Circuit Composed of Three Transistors and One Capacitor for Use in High-Speed-Scan AMOLED Displays[J]. Journal of Display Technology, 2015, 11(12):1031-1034.