1.1 二阶及三阶行列式
1.1.1 二元线性方程组与二阶行列式
在中学代数中学过,对于二元线性方程组
为消去未知数x2,以a22与a12分别乘上述两方程的两端,然后两个方程相减,得
(a11a22-a12a21)x1=b1a22-b2a12,
同理,消去未知数x1,得
(a11a22-a12a21)x2=a11b2-a21b1.
若a11a22-a12a21≠0,则
可以看出,(2)中的分子、分母都是4个数分两对相乘再相减而得.其中a11a22-a12a21由方程组的(1)的4个系数确定.
为了便于记忆这个公式,引入二阶行列式的概念.
定义1 由4个数a11,a22,a12,a21排成二行二列(横排称行,竖排称列)的数表并以两条竖线括之
称为二阶行列式,其值表示为a11a22-a12a21,即
其中数aij(i=1,2; j=1,2)称为行列式的元素(或称为元),每个元素下标的第1个数字表示元素所在的行,下标的第2个数字表示元素所在的列.
二阶行列式的定义,可用对角线法则来记忆.从左上角a11到右下角a22这条对角线称为主对角线,从右上角a12到左下角a21这条对角线称为副对角线,那么二阶行列式就是主对角线上两元素之积与副对角线上两元素之积的差.
由二阶行列式的定义,二元线性方程组(1)的解(2)中的x1,x2也可以写成二阶行列式,即
由定义1可知,若,二元线性方程组的解可表示为
若记,则有
可以看出,二元线性方程组的解的分母D均为原方程组的系数所确定的二阶行列式(即系数行列式),x1的分子D1是用常数项b1、b2替换D中x1的系数a11、a21所得的二阶行列式,x2的分子D2是用常数项b1、b2替换D中x2的系数a12、a22所得的二阶行列式.
例1 求解线性方程组
解 由于
因此
1.1.2 三元线性方程组与三阶行列式
对于三元线性方程组也有相似的讨论.设方程组
由消元法解得
(a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31)x1
=b1a22a33+a12a23b3+a13b2a32-b1a23a32-a12b2a33-a13a22b3,
(a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31)x2
=a11b2a33+b1a23a31+a13a21b3-a11a23b3-b1a21a33-a13b2a31,
(a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31)x3
=a11a22b3+a12b2a31+b1a21a32-a11b2a32-a12a21b3-b1a22a31.
若a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31≠0,则
定义2 设九个数排成三行三列的数表
称为三阶行列式,其值表示为
由定义2可以看出,三阶行列式等式右端含有6项,而每一项乘积都是由行列式中位于不同的行和不同的列的元素构成再冠以正负号,如图1.1所示的对角线法则:图中三条实线看做是与主对角线平行的联线,实线上三元素的乘积冠以正号,三条虚线看做是与副对角线平行的联线,虚线上三元素的乘积冠以负号.
图1.1
若三元线性方程组的系数行列式,
则三元线性方程组的解可表示为
例2 计算三阶行列式
解 按对角线法则,有
D=1×(-1)×2+2×4×5+3×1×1
-1×4×1-2×1×2-3×(-1)×5
=-2+40+3-4-4+15=48.
例3 求解方程
解 按对角线法则,方程左端
D=3x2+4x+18-9x-2x2-12
=x2-5x+6,
由x2-5x+6=0,解得
x=2或x=3.
例4 解线性方程组
解 因为方程组的系数行列式
所以