上QQ阅读APP看书,第一时间看更新
参考文献
[1]Weiss A,Leinwand LA. The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol,1996,12:417-439.
[2]Joseph L. Greenstein,Raimond L. Winslow. Integrative Systems Models of Cardiac Excitation-Contraction Coupling. Circ Res,2011,108(1):70-84.
[3]Noah Weisleder,Jianjie Ma. Altered Ca 2﹢ sparks in aging skeletal and cardiac muscle. Ageing Res Rev,2008,7(3):177-188.
[4]Leybaert L,Sanderson MJ. Intercellular Ca 2﹢ Waves:Mechanisms and Function. Physiol Rev,2012,92(3):1359-1392.
[5]Fabiato A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol,1985,85(2):291-320.
[6]Vasco Sequeira,Jolanda van der Velden. Historical perspective on heart function:the Frank-Starling Law. Biophys Rev,2015,7(4):421-447.
[7]Mayra de A. Marques,Guilherme A. P. de Oliveira. Cardiac Troponin and Tropomyosin:Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol,2016,7:429.
[8]Jennifer England,Siobhan Loughna. Heavy and light roles:myosin in the morphogenesis of the heart. Cell Mol Life Sci,2013,70(7):1221-1239.
[9]Lowes BD,Minobe W,Abraham WT,et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied,failing ventricular myocardium. J Clin Invest,1997,100(9):2315-2324.
[10]Miyata S,Minobe W,Bristow MR,et al. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res,2000,86(4):386-390.
[11]Fatkin D,McConnell BK,Mudd JO,et al. An abnormal Ca 2﹢response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J Clin Invest,2000,106(11):1351-1359.
[12]Gupta MP. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol,2007,43(4):388-403.
[13]Krenz M,Robbins J. Impact of beta-myosin heavy chain expression on cardiac function during stress. J Am Coll Cardiol,2004,44(12):2390-2397.
[14]Nakao K,Minobe W,Roden R,et al. Myosin heavy chain gene expression in human heart failure. J Clin Invest,1997,100(9):2362-2370.
[15]Herron TJ,McDonald KS. Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. Circ Res,2002,90(11):1150-1152.
[16]Schiaffino S,Reggiani C. Molecular diversity of myofibrillar proteins:gene regulation and functional significance. Physiol Rev,1996,76(12):371-423.
[17]Luo X,Zhang H,Xiao J,et al. Regulation of human cardiac ion channel genes by microRNAs:theoretical perspective and pathophysiological implications. Cell Physiol Biochem,2010,25(6):571-586.
[18]Berezikov E,Thuemmler F,van Laake LW,et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet,2006,38(12):1375-1377.
[19]Landgraf P,Rusu M,Sheridan R,et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell,2007,129(7):1401-1414.
[20]van Rooij E,Sutherland LB,Qi X,et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science,2007,316(5824):575-579.
[21]Tatsuguchi M,Seok HY,Callis TE,et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol,2007,42(6):1137-1141.
[22]Thum T,Galuppo P,Wolf C,et al. MicroRNAs in the human heart:a clue to fetal gene reprogramming in heart failure. Circulation,2007,116(3):258-267.
[23]David M Patrick,Rusty L Montgomery,Xiaoxia Qi,et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest,2010,120(11):3912-3916.
[24]Shuguang Dong,Wenhan Ma,Bohan Hao,et al. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int J Clin Exp Pathol,2014,7(2):565-574.
[25]Zhu SM,Si ML,Wu HL,et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1(TPM1). J Biol Chem,2007,282(19):14328-14336.
[26]Latronico MV,Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol,2009,6(6):419-429.
[27]Carè A,Catalucci D,Felicetti F,et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med,2007,13(5):613-618.
[28]Steenaart NA,Ganim JR,Di Salvo J,et al. The phospholamban phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme. Arch Biochem Biophys,1992,293(1):17-24.
[29]Davare MA,Horne MC,Hell JW. Protein phosphatase 2A is associated with class C L-type calcium channels(Cav1.2)and antagonizes channel phosphorylation by cAMP-dependent protein kinase. J Biol Chem,2000,275(50):39710-39717.
[30]Marx SO,Reiken S,Hisamatsu Y,et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel(ryanodine receptor):defective regulation in failing hearts. Cell,2000,101(4):365-376.
[31]Hall DD,Feekes JA,Arachchige Don AS,et al. Binding of protein phosphatase 2A to the L-type calcium channel Cav1.2 next to Ser1928,its main PKA site,is critical for Ser1928 dephosphorylation. Biochemistry,2006,45(10):3448-3459.
[32]Terentyev D,Belevych AE,Terentyeva R,et al. miR-1 overexpression enhances Ca 2﹢release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory. subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res,2009,104(4):514-521.
[33]Nicolaou P,Hajjar RJ,Kranias EG. Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J Mol Cell Cardiol,2009,47(3):365-371.
[34]Cai WF,Liu GS,Lam CK,et al. Up-regulation of micro-RNA765 in human failing hearts is associated with post-transcriptional regulation of protein phosphatase inhibitor-1 and depressed contractility. Euro J heart failure,2015,17(8):782-793.
[35]Takashima S. Phosphorylation of myosin regulatory light chain by myosin light chain kinase,and muscle contraction. Circ J,2009,73(2):208-213.
[36]Maier LS,Bers DM. Calcium,calmodulin,and calcium-calmodulin kinaseⅡ:heartbeat to heartbeat and beyond. J Mol Cell Cardiol,2002,34(8):919-939.
[37]Wahlquist C,Jeong D,Rojas-Muñoz A,et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature,2014,508(7497):531-535.
[38]Jessup M,Greenberg B,Mancini D,et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease(CUPID)Investigators. Calcium Up regulation by Percutaneous Administration of Gene Therapy in Cardiac Disease(CUPID):a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca 2﹢-ATPase in patients with advanced heart failure. Circulation,2011,124(3):304-313.
[39]Xu M,Wu HD,Li RC,et al. Mir-24 regulates junctophilin-2 expression in cardiomyocytes. Circ Res,2012,111:837-841.
[40]Li RC,Tao J,Guo YB,et al. In vivo suppression of microRNA-24 prevents the transition toward decompensated hypertrophy in aortic-constricted mice. Circulation research,2013,112(4):601-605.