机器学习算法实践:推荐系统的协同过滤理论及其应用
上QQ阅读APP看书,第一时间看更新

参考文献

[1] 孟祥武,刘树栋,张玉洁.社会化推荐系统研究[J].软件学报,2015,26(6):1356-1372.

[2] 王国霞,刘贺平,李擎.基于万有引力的个性化推荐算法[J].工程科学学报,2015(2):255-259.

[3] Adibi P, Ladani BT. A collaborative Filtering Recommender System-based on User’s Time Pattern Activity[C]//Information and Knowledge Technology (IKT) , 2013 5th Conference on IEEE, Kharagpur, 2013: 252-257.

[4] Jia C X, Liu R R. Improve the Algorithmic Performance of Collaborative Filtering by Using the Interevent Time Distribution of Human Behaviors[J]. Physica A Statistical Mechanics & Its Applications, 2015, 436: 236-245.

[5]  P, Grzegorzewski P.Vague preferences in recommender systems[J].Expert Systems with Applications, 2015,42(24):9402-9411.

[6] 郑志高,刘京,王平.时间加权不确定近邻协同过滤推荐算法[J].计算机科学,2014,41(8):7-12.

[7] 李源鑫,肖如良,陈洪涛.时间衰减制导的协同过滤相似度计算[J].计算机系统应用,2013,22(11):129-134.

[8] 刘东辉,彭德巍,张晖.一种基于时间加权和用户特征的协同过滤推荐算法[J].武汉理工大学学报,2012,34(05):144-148.

[9] Chen C, Yin H, Yao J, et al. TeRec: A Temporal Recommender System over Tweet Stream[J]. Proceedings of the Vldb Endowment, 2013, 6 (12): 1254-1257.

[10] Huang Y, Cui B, Zhang W, et al. TencentRec: Real-time Stream Recommendation in Practice[C]//ACM SIGMOD International Conference on Management of Data. ACM, Melbourne, 2015: 227-238.

[11] Yin H, Cui B, Lu H, et al. A Unified Model for Stable and Temporal Topic Detection from Social Media Data[C]//2013 IEEE 29th International Conference on Data Engineering (ICDE) . IEEE Computer Society, Brisbane, 2013: 661-672.

[12] Yin H, Bin C, Ling C, et al. A Temporal Context-aware Model for User Behavior Modeling in Social Media Systems[C]//Association for Computing Machinery. Special Interest Group on Management of Data. International Conference Proceedings. Association for Computing Machinery, Salt Lake City, 2014: 1543-1554.

[13] Ren Y, Li G, Zhou W. Learning User Preference Patterns for Top-N Recommendations[C]//Web Intelligence and Intelligent Agent Technology (WI-IAT) , 2012 IEEE/WIC/ACM International Conferences on. IEEE, Hong Kong, 2012: 137-144.

[14] 吴毅涛,张兴明,王兴茂.基于用户模糊相似度的协同过滤推荐算法[J].通信学报,2016,37(1):198-206.

[15] 荣辉桂,火生旭,胡春华.基于用户相似度的协同过滤推荐算法[J].通信学报,2014,35(2):16-24.

[16] 朱强,孙玉强.一种基于信任度的协同过滤推荐方法[J].清华大学学报(自然科学版),2014(3):360-365.

[17] 焦东俊.基于用户人口统计与专家信任的协同过滤算法[J].计算机工程与科学,2015(01):179-183.

[18] 王瑞琴,蒋云良,李一啸,等.一种基于多元社交信任的协同过滤推荐算法[J].计算机研究与发展,2016,53(6):1389-1399.

[19] Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42 (8): 30-37.

[20] Paterek A. Improving Regularized Singular Value Decomposition for Collaborative Filtering[C]. //Preceedings of KDD Cup and Workshop, California, 2007, 39-42.

[21] WengJ, Miao C, Goh A. Improving Collaborative Filtering with Trust-based Metrics. [J]. Sac Proceedings of the Acm Symposium on Applied Computing, 2006: 1860-1864.

[22] Moradi P, Ahmadian S. A Reliability-based Recommendation Method to Improve trust-aware Recommender Systems[J]. Expert Systems with Applications, 2015, 42 (21): 7386-7398.

[23] Ghazanfar M A, Prugel-Bennett A. The Advantage of Careful Imputation Sources in Sparse Data-Environment of Recommender Systems: Generating Improved SVD-based Recommendations[J]. Informatics, 2013, 37 (1): 61-92.

[24] Scott D, Dumais S T, Furnas G W, et al. Indexing by latent Semantic Analysis[J]. Journal of the American Society for Information Science, 1990, 41 (6): 391-407.

[25] 夏小伍,王卫平.基于信任模型的协同过滤推荐算法[J].计算机工程,2011,21期(21):26-28.

[26] Chin W S, Yuan B W, Yang M Y, et al. LIBMF: A Library for Parallel Matrix Factorization in Shared-memory Systems[J]. Technical report, 2015: 32-37.

[27] 邓仙荣.基于梯度提升回归算法的O2O推荐模型研究[D].合肥:安徽理工大学,2016.