![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§1.1 n阶行列式定义
导学提纲
1.何谓2阶行列式?怎么计算2阶行列式的值?
2.二元一次方程组解的公式?
3.何谓3阶行列式?怎么计算3阶行列式的值?
4.三元一次方程组解的公式?
5.何谓元素aij的余子式M ij?何谓aij的代数余子式A ij?
6.何谓n阶行列式?
为便于记忆二元一次方程组解的公式,引入
定义1.1.1 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0001.jpg?sign=1739911536-okDElAYQNyRXyCphCfyLzsWEOMuPo2iJ-0-dda4612d9b35cbf60dd335bdc3d821cd)
称为2阶行列式,它表示代数和a11a22-a12a21,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0002.jpg?sign=1739911536-m9S70uydoUxfzDdxV88Rdsr1ObctGSJH-0-b07dd9050891e96f0d549b3574ce32f7)
2阶行列式中,横排称为行,竖排称为列.位于第i行第j列的元素ai j称为(i, j)元(i, j=1,2).a11, a22称为主对角线上的元素;a12, a21称为次对角线上的元素.2阶行列式的算法是:主对角线上的两个元素的乘积减去次对角线上两个元素的乘积.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0003.jpg?sign=1739911536-vilW0gtqPaOgazeGzxby3hcfoTABcUYR-0-174c2e3888c0d371aef71bc66eb49ee3)
定理1.1.1 二元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0004.jpg?sign=1739911536-iEJMm094GsZKThkUeKrBCAs73je5Eepy-0-5de81fdf3cb123213f5ef614c2bfa3c2)
当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0005.jpg?sign=1739911536-5aqWO9xMwu35U2UVHIRccwFAB4XSrF31-0-6d38e377e8c20cf28f6c6e293f6b325a)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0006.jpg?sign=1739911536-X2IQA2TRo9vojOgNE3BigxjUXXLNJ5XQ-0-626142220853c8c30a83776a0342d0b4)
证 ①×a22-②×a12得
(a11a22-a12a21)x1=b1a22-b2a12,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0001.jpg?sign=1739911536-xw1o2Rmdq06bR6mdJVXOrMecJ92F3Uja-0-0f7b1639de6080ae9c11efce6594662f)
②×a11-①×a21得
(a11a22-a12a21)x2=a11b2-a21b1,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0002.jpg?sign=1739911536-axlrRrv674jzn3LY03UsuAaBvzPvmpMM-0-b9bdfa0925c78108a655ecdcf7e2d40f)
例1.1.1 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0003.jpg?sign=1739911536-MUQEelKTM3fcuZ9BwPsRNT98vq0ic1go-0-479c9eb3fb9aa88ba75c8a98a018be0c)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0004.jpg?sign=1739911536-iMZTb3XcefEklqy6HEtTCTP8Fu0gMC2T-0-528d4205f92edae76d887387aebf0693)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0005.jpg?sign=1739911536-oPU3Rxff0h1xe253bOzASy5mxR55L9mH-0-c054827c13a8528b398e3bd5d78f9a4d)
(读者可将解代入方程组验算之).
用加减消元法解三元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0001.jpg?sign=1739911536-QPq8PUurqKTyQ9HlJf4ZaAZh1eQj6LDj-0-2c1e56e7c4679d9698b2204f2dca9c87)
得
定理1.1.2 三元一次方程组(1),当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0002.jpg?sign=1739911536-GNglTVoYoJO0VMcd4PFzBIDQgkf7HnnO-0-f9aae3a18e527aceda93129e3da76673)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0003.jpg?sign=1739911536-i7CaQPAmHAykiVdMsaF8HHRQgxhQp7C4-0-c9085e976e7a0383360f31a00db021d6)
为此引入
定义1.1.2 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0004.jpg?sign=1739911536-neRWd3i73CuzVTabBl2q6PlaJSHuqhyL-0-db3489940ca48f8f08d00dd20beae47f)
称为3阶行列式.它表示代数和
a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31.
即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0001.jpg?sign=1739911536-k45VWXG3ZfS0ReAkfyCS1wKjjD9a71rz-0-3958550b746ada8a3072d6e7f8c5b3b5)
3阶行列式等于3! =6项代数和.每一项都是取自不同行不同列的3个元素相乘,主对角线方向三项前面带正号,次对角线方向三项前面带负号.3阶行列式算法如下图:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0002.jpg?sign=1739911536-VVSbRNHGX7fT9sZArz365HIPpLLx7hJU-0-f20090caccc54044bdb5b27c0f95d52f)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0003.jpg?sign=1739911536-6pn0Q5As0gYl5pJAsY5jiNmn5SMzGEmz-0-809a418955b627b6919ec721952b5c6a)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0001.jpg?sign=1739911536-AXBatcPAnj7JI93yGHLyJwdP0qlfeJVd-0-3c62406e13cb3fc8fa0157b32f8c3273)
例1.1.2 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0002.jpg?sign=1739911536-hewyIUU24hUGQ1YHRPnKsR31d6rq6yXk-0-50c93b9e8ac4bddcf6c14fdae0499825)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0003.jpg?sign=1739911536-wFs7CYKaRWKC2Ba0qWfZ9A7QYRYZdkuS-0-cadbf679cae39e6b5313e8ae93f65951)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0004.jpg?sign=1739911536-FUBO11eGngFGEEj8V4TXgHwwdz35z4BM-0-cd7a74830dd03ae2fb752fd4d7baa15e)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0001.jpg?sign=1739911536-XwCjJkf5PWe3XY9ktRcCyHPTdblU1v3X-0-c7672db0aaeee96d14de12cbea0c4a09)
(读者可以将解代入方程组验算之).
例1.1.3 解方程
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0002.jpg?sign=1739911536-2oWEu6NTQvSslwXVzF8MgxqniQkjaiTu-0-e0229d105f4eab5bf6c5c46ce55129dc)
解 (1)左边=(λ-3)(λ+1)-5=λ2-2λ-8=(λ+2)(λ-4)=0,
所以方程有两个根:λ1=-2, λ2=4.
(2)左边=(λ+1)(λ-3)(λ-2)-(-1)×4×(λ-2)=(λ-2)(λ2-2λ+1)=(λ-2)(λ-1)2=0,
所以方程有根:λ1=2, λ2=1(2重).
定理1.1.1和定理1.1.2可以推广到n个方程n个未知量的一次方程组情形(见 §1.4).为此需要引入n阶行列式定义,先分析3阶行列式与2阶行列式的关系.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0003.jpg?sign=1739911536-Q2Dmk2cuEoE855IGO7CqBqtwbSZjtk4Y-0-00a99b8b60577a7564292f3df0e4513a)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0001.jpg?sign=1739911536-O7YEHPcqIV4OlHgqsJnCZPknmkwAUPQQ-0-f39575bf3d9d11d95f75a0c3428e4260)
定义1.1.3 行列式中元素aij的余子式Mij是指去掉aij所在第i行和第j列元素后余下的行列式.aij的代数余子式Aij=(-1)i+jMij.
例如,3阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0002.jpg?sign=1739911536-4JbuNxnBwcZPN8GDJGGb5B2bpzkfr5Kz-0-4080ada0dfbdd4c319c26d16033a5fa7)
中,元素
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0003.jpg?sign=1739911536-L3vIK6UuBCpydsZjscErh0TKATXS6LdT-0-05ffd52e9f7f8423db366c716f862f3c)
所以3阶行列式还可以定义为
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0004.jpg?sign=1739911536-NR5At4kuwoJGjJf882UfkFNdg5iiMg8z-0-fd077aa0c53195a1620f512ea4e0b9dc)
即3阶行列式的值等于第1行每个元素与其代数余子式乘积之和.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0025_0001.jpg?sign=1739911536-qgwuLoN2MWvUTCi3V8LtFTlIU0Nb45wA-0-3ebb6703ee99c235584facd68b1e9232)
现在我们归纳出n阶行列式定义.
定义1.1.4 n=2阶行列式已经定义(定义1.1.1),假设n-1阶行列式已经定义,那么n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0001.jpg?sign=1739911536-n5H83fhaHXLXDAsr3RgWWKyLC1Mk1VIm-0-5de003232fe2465fc8e36f46c2e47797)
其中A1j=(-1)1+jM1j,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0002.jpg?sign=1739911536-IQBdJdoOELA8tswSaTF9xEXOqefdYiHh-0-10da2535a1eb3770b9e0a72f8e207e14)
或简单记作|aij|nn.
例1.1.4 按定义计算下列行列式.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0003.jpg?sign=1739911536-ey2iajPBTTt1aWrnDY51KmGN0s8Y9i7W-0-c90857c8938baa0614768a4f6ce7eb55)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0001.jpg?sign=1739911536-AB7NLwCvKfEaTsPHOsM0PMtYZoEMMP42-0-72dd8f325d0530baaac7af33be967d56)
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0002.jpg?sign=1739911536-LjOfzmtC3ft0SmWLE0WMe7pPbHx2UbrQ-0-310ac900e3f6255227f10ed06a2b0d8e)
一般地,n阶下三角行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0003.jpg?sign=1739911536-NjKYlFnozj30bP3rWEWyAk34Guf69qS2-0-b0aa8cf22db1acc8327ae90a395a4665)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739911536-HFKEwij3uTN75XhYETWr8ETVEsICOgrj-0-3e9baf683943d794f6aa43d4df1372ae)
第(3)题答案说明4阶行列式中次对角线上4个元素的乘积前面带正号.
可见,对于n≥4阶行列式,2、3阶行列式的对角线算法已不适用!
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0002.jpg?sign=1739911536-OiqtGwsBp3WD1HS0APqL2TywYQkUFVTm-0-f35ae6537ee72ee9b69061de3bebef0a)
第(4)题可以作为公式用.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0003.jpg?sign=1739911536-QK9XnNuTcS99Me8uwqPQonSDZ2FPpcNK-0-904185a3e9e25f7278e8c54747f2c20e)
一般地,设|A|=|aij|r, |B|=|bij|s,那么有公式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0004.jpg?sign=1739911536-huCVXg5IcEvbLwhaA0TJNQnjw1PlnHTY-0-631c8dbe8736c0cffcc073dc8424cd43)
习题1.1
1.填空题:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739911536-mUSHvR0hsGzEK13TaEnL2Rv0r8pOQjkm-0-520077892f6c7e12381f64d9cd67073d)
2.解方程:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0002.jpg?sign=1739911536-Y6xKrdr86AFuDMMhWrQrM5Pd8QszGMxQ-0-e7517cfb212f5690e489ba4a92f5db2b)
3.解方程组:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0003.jpg?sign=1739911536-M7xJgr2va7i4Xjcn23ZSpEfmIRr2Zy2W-0-a918a7cef384813807d329345521e8e7)
4.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0001.jpg?sign=1739911536-XwvWh1ECCz6Bm3zVIQqoGZkyb9ftXjxB-0-79454adad6896e9448c1d28042c8a574)
5.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739911536-jajbPQMGo1DYXaKrZs2Wslh9gsp9fEjb-0-d0f6ef77db0d0ab83c10248f45106a96)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0031_0001.jpg?sign=1739911536-tw9HcNUMVdkuZIZeyFTnVOldfaxP7Luc-0-723c706cec10219f878397c5e6b237e4)