文物虚拟复原关键技术研究:以秦始皇兵马俑为例
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

三、碎块匹配研究现状

兵马俑破碎后会随机形成若干个任意形状的碎块,破碎兵马俑的复原问题就是将这些碎块按照某种方法进行匹配拼接的过程。两个碎块的匹配就是通过某种方法寻找一个三维刚体变换,使得两个待匹配碎块的断裂面的共同部分能够正确匹配和拼接的过程。[13]目前,碎块匹配已经在考古研究(李群辉,2012;蔺素珍,2016)、雷达影像处理(陈思颖,2016)、生物工程(Makinen,2010)等领域得到了广泛的应用。

整体来说,碎块的匹配过程可以分为粗匹配和精匹配两个阶段。粗匹配就是将两个碎块的断裂面进行粗略对齐的过程,它能为精匹配带来较好的初值;而精匹配就是指将粗匹配后的两个碎块进行进一步对齐的过程,从而完成两个碎块的精确匹配。在碎块粗匹配算法中,通常采用曲面的特征进行匹配,如曲率(蔺素珍,2016)和法向(Miu,2005)特征,它们具有旋转和平移不变性,但是离散曲率对噪声敏感,会带来一定的误差。轮廓曲线也是曲面特征描述的一种重要方法,只要正确提取并匹配了刚体碎块断裂面的轮廓曲线,那么两个碎块就匹配好了,但是对于轮廓曲线不明显的碎块,该方法并不适合(王洋,2016;李群辉,2016)。另外,还可以利用积分不变量来描述刚体碎块断裂面凹凸不平的几何特征,通过对断裂面上或凸或凹的显著性区域的匹配来完成两个碎块断裂面的匹配(Pottmann,2009)。

在碎块精匹配算法中,迭代最近点(Iterative Closest Point,ICP)算法也得到了较为广泛的应用,该方法通过对两个断裂面上的顶点进行配准来完成两个碎块的断裂面的匹配(Besl,1992)。ICP算法步骤简单,易于实现,但是在数据量较大时需要的迭代时间比较长,而且对两个待匹配点集的初始位置要求较高,抗噪性也不好。针对ICP算法中存在的这些问题,国内外学者提出了许多改进的ICP算法,比如,尺度迭代最近点(Scaling Iterative Closest Point,SICP)算法,该算法将一个带有边界的尺度矩阵加入ICP算法中,解决了不同尺度情况的点云数据的配准问题(Du,2010);将模拟退火搜索与标准稀疏ICP算法结合,可以高效地解决优化问题,具有较强的抗噪性,能较好地解决两个几何表面的配准问题(Mavridis,2015);基于概率模型的概率迭代最近点(Probability Iterative Closest Point,PICP)算法,该算法具有较强的抗噪性,可以大大提高点云模型的配准精度和速度(Du,2015);虽然这些改进的ICP算法在收敛速度、精度和抗噪性等方面都得到了较大程度的提高,但是对于一些特殊刚体碎块(如兵马俑碎块)的匹配效果并不十分理想。

在兵马俑碎块匹配拼接方面,西北大学文化遗产数字化国家地方联合工程研究中心也做出了突出的贡献。该中心承担了多项国家级的文物数字化复原项目,尤其在兵马俑等刚体文物的虚拟复原方面取得了很大的成绩。比如,利用碎块断裂面上的轮廓线,实现兵马俑碎块匹配拼接(茹少峰,2003);运用傅里叶变换实现碎块边缘轮廓线的分段匹配,从而将兵马俑碎块进行了精确对齐(吕科,2003);首次提出了内轮廓线和外轮廓线的概念,并将其成功地应用到兵马俑碎块匹配中(樊少荣,2005);利用B-样条曲线实现碎块轮廓线的拟合,并通过空间曲线的匹配达到兵马俑碎块匹配的目的(杜建丽,2005);利用曲线和曲面的匹配方法,通过小波轮廓描述符和碎块表面的脚标实现碎块的两两匹配(周术诚,2007);基于特征点的断裂面匹配方法,实现了兵马俑碎块的精确匹配(孟秋晴,2013);基于特征轮廓约束的断裂面匹配方法,实现了兵马俑碎块的精确匹配(李静,2015);基于空间模板的轮廓线匹配方法,提高了碎块的匹配效率(刘军,2014);基于变尺度的点云优化配准算法,并将该算法成功地应用到了兵马俑碎块的匹配中(赵夫群,2017);基于轮廓曲线和特征区域的碎块匹配方法,有效提高了兵马俑碎块断裂面的匹配精度(赵夫群,2018)。