Chapter 1
第1章 大语言模型的基础知识
随着ChatGPT在全球范围内的普及,生成式人工智能已经成为人们日常生活中不可或缺的一部分。AIGC(Artificial Intelligence Generated Content,人工智能生成内容)因其独特的创造力而备受瞩目,用户只需提供提示词,背后的人工智能服务便能够生成符合用户需求的文本、图像、音频和视频等多样化内容。这种技术正在以前所未有的方式改变着我们的生产和生活。
大语言模型(或称“大模型”)是指能够处理和生成自然语言文本的、参数规模很大的人工智能模型。这种模型基于深度学习技术并经过海量语料训练,利用大量的计算资源来学习大规模文本数据的统计规律,以捕捉自然语言的语法、语义和上下文信息。大语言模型被广泛应用于文本生成、机器翻译、对话系统等自然语言处理场景中,正在不断推动这些领域的发展和创新。
GPT(Generative Pre-Trained Transformer,生成式预训练Transformer[1])是大语言模型的一种具体实现,由OpenAI提出,基于Transformer架构,采用了自注意力机制和多头注意力机制,可有效地处理长距离依赖关系和上下文信息。Transformer架构是目前大语言模型的主要技术体系,自2017年由Google的翻译团队提出后迅速流行开来,促进了大语言模型的快速发展。基于Transformer架构涌现出很多模型,如OpenAI的GPT-3.5、GPT-4,Anthropic的Claude3,以及Meta开源的LLaMA2等,其中也有一些优秀的开源国产模型,如智谱华章ChatGLM、通义千问、百川等,用户可以下载并免费使用这些模型。
本章介绍大语言模型的基本概念、基本原理、应用开发技术和训练方法,以便读者全面了解大语言模型的基础知识。