参考文献
[1]OPITZ D, MACLIN R. Popular ensemble methods: An empirical study[J]. Journal of Artificial Intelligence Research, 1999, 11: 169-198.
[2]HUANG P S, HE X, GAO J, et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: Association for Computing Machinery, 2013: 2333-2338.
[3]CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: Association for Computing Machinery, 2016: 7-10.
[4]GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[EB/OL].(2017-03-13)[2022-01-10].https://arxiv.org/abs/1703.04247.
[5]WANG R, FU B, FU G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD'17.New York: Association for Computing Machinery, 2017: 1-7.
[6]CARBONELL J, GOLDSTEIN J. The use of MMR, diversity-based reranking for reordering documents and producing summaries[C]//Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 1998: 335-336.
[7]WILHELM M, RAMANATHAN A, Bonomo A, et al. Practical diversified recommendations on youtube with determinantal point processes[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: Association for Computing Machinery, 2018: 2165-2173.
[8]AI Q, BI K, GUO J, et al. Learning a deep listwise context model for ranking refinement[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: Association for Computing Machinery, 2018: 135-144.
[9]PEI C, ZHANG Y, ZHANG Y, et al. Personalized re-ranking for recommendation[C]//Proceedings of the 13th ACM Conference on Recommender Systems. New York: Association for Computing Machinery, 2019: 3-11.