SOLIDWORKS Flow Simulation工程实例详解
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.2.2 动量方程

由动量守恒可以得到流体的动量方程。动量守恒是流体运动时所遵循的普遍定律之一。它的物理含义是,对给定的流体系统(控制体),其动量的时间变化率等于作用在该流体系统上的外力总和。

根据动量守恒可以推导得到微分形式的动量方程

式中,ρ是流体密度;uvw是流体速度沿xyz方向的速度分量;p是流体压力;fx是体积力分量;τxx是切应力分量;τyx是控制体中垂直于y轴的平面上沿x轴方向的切应力分量;τzx是控制体中垂直于z轴的平面上沿x轴方向的切应力分量。动量方程中考虑了惯性力表面力黏性力体积力。对于包含黏性力的动量方程又称为纳维-斯托克斯方程(N-S方程)。式(1-8)是动量方程在x方向上的表现形式,在yz方向也可以得到类似的方程形式。

注意:在有些流体力学教程中,微分形式的动量方程有时候用随体导数算子或矢量微分算子∇来简化表示,实际上展开后与式(1-8)是一样的。本书的目的是让读者了解这些方程的基本含义,因此不对所有方向上的动量方程进行具体和完整的描述,读者如有兴趣可以查阅流体力学相关资料。