第31章 混合
经过前一次的实验,c就对沙子有特别的想法。这天,他拿起一粒沙子就扔到了水里。不过,同时也想起了一个问题。说是一个来自意大利的人喜欢使用Sfumato进行绘画修饰。有一次,他决定将酒精与水混合。为了了解这件事的背景,我们需要先想一个事件。我们知道水的密度是1克每立方厘米,而酒精的密度是0.79克每立方厘米。假设在两个容器里的两种物质的体积相同,并且设体积为v。于是,就有m1=v,m2=0.79v。平均密度=(m1+m2)÷(v+v)=(v+0.79v)÷2v=0.895克每立方厘米。由此我们可以得出结论,当两个密度不同的物体体积相同时,它们的平均密度介于两者之间。假如体积不同呢?我们令v1=2v2,则m1=2v2,m2=0.79v2。平均密度=(m1+m2)÷(v1+v2)=(2v2+0.79v2)÷3v2=0.93克每立方厘米反之,若是v2=2v1,则平均密度为0.83。总之,无论它们体积如何,混合后的密度都是介于两者之间的。但是,他在混合之后却遇到问题。有次,他把相同体积的酒精和水混合,但是总的体积却不是原先的二倍。而且是比原来的体积的二倍少。有人说,酒精蒸发带走一部分体积。这是必然的,但是蒸发的量很小。不会出现较大的差距。实际上,我们总是把两种物体混合当作简单的物理过程。即就像堆积问题一样,虽然两种堆积在一起,但是我们还是可以清楚地看到那种物体是哪种物体。但是,有个人的答复或许可以给我们一点启示。那就是发生了复杂的物理过程,也有可能是发生了化学反应。就像我前面说的那样,在水中存在可逆反应。在一个方向的反应中,有氢气和氧气的生成。但是,由于是可逆的,所以普通人又很难察觉出来。如果是普通的化学反应,反应物必然全部消失。若是化学反应的速率过慢,反应物参与的数量就会稀少。正如我前面所说,可逆反应的可能性最大。酒精是化学式是CH3OH,最有可能发生的取代反应。在看海洋方面的书籍时,书上提到有时海水中的混合物密度小于原先的物体中的任何一个的密度。想必是有着相似的原因。
两种事物混合的问题虽然热门,却总是没有得到解决。比如,一斤盐与一斤水混合后,总质量却不是两斤。
海水还是如往常一般翻转。
由于绘画中的素描的学科基础是几何,所以b就对平面几何感兴趣。她在画板上画了一个侧放的圆柱,d就在一旁说道,若是这个圆柱是标准的,并在一个绝对光滑的地面上,给予这个圆柱一个向前的推力,圆柱会一直运动下去。又如它在水中,同样的推力。圆柱好像是被推动,实际上,同时也发生了旋转。这与乒乓球类似。无论它处于何种运动,旋转总是不可避免地发生。等d说完,b又在纸上画了一个六角星和八边形。它们都是运用相同的原理画成的。即分别用两个边长相等的三角形和正方形错开相交而成。还有就是,两个半径相同的圆相交的重叠部分是对称的。