1.6.2 示波器探头及其使用
探头按照是否需要供电可分为有源探头(内置放大器,需要外部供电)和无源探头(内部都是无源器件,不用单独供电),按照测量信号类型可分为电压探头和电流探头。
10:1无源探头:10:1高阻无源探头是最常使用的探头,它具有输入阻抗高、动态范围宽的优点,缺点是输入电容大且需要补偿。因示波器内也存在寄生电容,同一个示波器的不同通道或者不同示波器的寄生电容都不一样,所以同一个探头接到另外一个通道或者另外一个示波器需要再次补偿。在10:1探头中经过分压之后示波器收到的信号只有原信号的1/10,所以示波器需要经过放大之后再显示,这种情况会把示波器本底噪声也放大。1×探头则不同,在这个档位信号不经衰减直接进入示波器,所以示波器本底噪声也不会放大,故1×档位适用于测小信号或者峰峰值纹波。
有源探头:有源探头有输入电容低、带宽高、输入电阻高和无须补偿等优点,缺点是成本较高、需要供电和动态范围低。有源探头可以分为单端有源探头、差分探头(又有高带宽和高压之分)和电流探头等类型。单端有源探头是测试点对地的参考电平,差分探头可以直接测两个测试点的相对电位差,不需要和“地”有联系,在进行浮地测量或者要求共模抑制能力的测试时就需要使用差分探头。
单端有源探头:单端有源探头内有阻抗比较高的高带宽放大器,需要外部供电,它适用于需要高输入阻抗、高带宽的场景,一般能够提供1MΩ输入阻抗和1GHz以上带宽。有源探头的放大器接近待测电路,因此环路较小,可以减小寄生参数,带宽可以做得更高,并且可以驱动较长的线缆。但是由于动态范围不高,很容易被高压破坏,所以使用时应注意待测电路的电压范围,防止被破坏。
差分有源探头:差分有源探头的前端放大器是差分放大器,共模抑制比的能力强,有高带宽和高电压的差分有源探头之分。高带宽差分有源探头主要用于测试高速信号,这种探头带宽比一般的单端有源探头更高,一般高速数字信号测试都会使用差分探头。此外,对一些带宽需求不高,但是对动态范围反而有一定要求的场景,如CAN总线测量等,就需要使用高压差分探头。
电流探头:测试电流有专门的电流探头,电流探头实质上是把电流参数按照一定的转化关系转化为电压,然后示波器再根据该电压值得到对应电流大小。电流探头主要是根据霍尔效应和电磁感应原理将电流信号转化为电压信号。利用霍尔效应原理的电流探头的好处是可以检测直流和交流,但是缺点是小电流测量能力有限,可以通过把待测线缆在感应环里多绕几圈来放大电流产生的磁场。为降低导线环路引入的感抗,可将导线双绞,最大限度减小环路面积。利用电磁感应原理的电流探头灵敏度高,带宽也比较高。
探头作为一个连接待测点到示波器的中间环节,它与示波器一起共同组成信号波形测试系统。一个理想的探头模型应该具有输入阻抗无限大、无限带宽、零输入电容、动态范围无限大、零延时等特点,但是现实中没有这种理想的探头。探头的常规技术参数有带宽、阻抗匹配、衰减比、上升时间等,这些参数对正确选择和使用探头,进而对测试结果的正确性及准确性至关重要。
1.带宽
带宽是指正弦波信号衰减到-3dB(就是在高频处增益下降到0.707)时的频率,选择示波器和探头带宽时至少要选择被测量方波信号的5次谐波频率以上的带宽。
2.阻抗匹配
探头输入阻抗相当于在被测电路上并联了一个阻抗,对被测信号有分压和增加负载的作用,选择不当会影响被测信号的幅度和直流偏置。探头的输入阻抗要与所用示波器的输入阻抗匹配,以减小对被测电路的负载作用。另外还需要注意输入阻抗会随着频率的增加而下降。例如用探头×10档测量信号,随信号频率增加,容性负载影响越明显,造成探头与示波器的阻抗不匹配,影响测量结果。为了消除这种影响,需要通过探头端的可调电容进行补偿调节,消除低频或高频增益。
3.探头衰减系数
示波器探头上标注有衰减系数,典型的衰减系数是1×、10×和100×。衰减系数指的是探头信号幅值的衰减比例,例如1×探头就没有对信号进行衰减,而10×的探头就会将信号幅值降到原本的1/10。需要注意的是在使用探头的时候,需要根据探头的衰减系数在示波器上设置好对应的比例,才能得到真实的数值。
4.上升时间
上升时间是指测量信号上升沿(10%~90%)时的最短时间,上升时间越短,灵敏度越高,对于被测信号的还原度就越高。在测量脉冲信号上升时间或下降时间时,为了保证合理的精度,探头和示波器的总上升时间应该是被测脉冲宽度的1/3~1/5。对上升时间是被测脉冲宽度1/3的示波器/探头组合,可以测量5%误差范围内的脉冲上升时间。
以上就是对探头基础知识的介绍以及探头在不同场合的具体应用情况。在使用探头测试待测点时,探头并不是完全能把信号完整地传输到示波器内,需要考虑探头对待测信号以及示波器的影响,根据实际的被测信号特征选择合适的探头以及适当的测试环境,才能得到正确的测量结果,否则有可能得到与实际情况差异较大的结果,从而被错误的测量结果误导,影响判断。