二次绕组反相SEN Transformer潮流控制理论与方法
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

2.2.2 磁路等效计算模型

ST等效磁路中磁通与磁导、磁动势之间的关系满足以下矩阵方程:

式中,Φ为各绕组支路构成的磁通矩阵;P为各励磁支路构成的磁导矩阵;Ni分别为绕组匝数和绕组电流构成的矩阵;θ为各励磁支路的磁动势矩阵。

根据高斯磁路定律,流入和流出节点的磁通代数和必须为0,即

式中,矩阵AT是等效磁路的节点关联矩阵,矩阵元素为1、-1和0,分别表示该支路磁通流入、流出和不与该节点相连。各节点的磁通代数方程和等效磁路的节点关联矩阵AT见附录A-1。

节点磁动势与支路磁动势满足以下关系:

式中,θnode表示磁路各节点的磁动势。

联立式(2-3)~式(2-5)可得

式中,M=I-PA(ATPA)-1ATI为单位阵。

将励磁支路分成两部分,具有磁动势和磁导部分的支路ΦM,即流经绕组线圈的磁通支路;只具有磁导部分的支路ΦP,即流经铁轭和漏磁的磁通支路。式(2-6)可以改写成如下形式

式中,PM为铁心磁导矩阵;PP为漏磁路磁导与零序磁导矩阵;NMiM为磁动势矩阵。其中,MMM是矩阵M中12×12维的子矩阵;MMPMPM分别是矩阵M中12×17维和17×12维子矩阵;MPP是矩阵M中17×17维的子矩阵;ΦMiM是12×1维的列向量;ΦP是17×1维的列向量;PMNM是12×12维的对角矩阵;PP是17×17维的对角矩阵,即

ΦM=[ΦA(t),ΦB(t),ΦC(t),Φa1(t),Φb1(t),Φc1(t),Φa2(t),

Φb2(t),Φc2(t),Φa3(t),Φb3(t),Φc3(t)]T

iM=[iST,pa(t),iST,pb(t),iST,pc(t),iST,sa(t),iST,sa(t),iST,sa(t),

iST,sb(t),iST,sb(t),iST,sb(t),iST,sc(t),iST,sc(t),iST,sc(t)]T

PM=diag(PA(t),PB(t),PC(t),Pa1(t),Pb1(t),Pc1(t),

Pa2(t),Pb2(t),Pc2(t),Pa3(t),Pb3(t),Pc3(t))

NM=diag(NA(t),NB(t),NC(t),Na1(t),Nb1(t),Nc1(t),

Na2(t),Nb2(t),Nc2(t),Na3(t),Nb3(t),Nc3(t))

式中,diag表示对角矩阵。

由式(2-7)可得:

又因为

结合式(2-8)和式(2-9),得到ST的感应系数矩阵为

式中,LST为12×12维的对称矩阵。式(2-10)即为通过UMEC推导出的由支路磁导组成的ST感应系数矩阵。矩阵LST中主对角线元素为一、二次绕组的自感,其余位置分别为绕组间的互感。若不考虑ST的多绕组耦合效应,则矩阵LST为只含自感系数的对角矩阵。

进一步地,由式(2-10)可计算出ST一、二次侧的自感系数和互感系数,代入ST一、二次侧的电压电流方程,即得ST暂态方程为

式中,p为微分算子,p=d/dtuST为12×1维的ST一次绕组和二次绕组端电压列向量;r为12×12维的等效内阻对角矩阵,即

uST=[uST,pa(t),uST,pb(t),uST,pc(t),uST,sa1(t),uST,sb1(t),uST,sc1(t),uST,sa2(t),

uST,sb2(t),uST,sc2(t),uST,sa3(t),uST,sb3(t),uST,sc3(t)]T

r=diag(rA,rB,rC,ra1,rb1,rc1,ra2,rb2,rc2,ra3,rb3,rc3)

式中,uST,pa(t),uST,pb(t),uST,pc(t)分别为3个一次绕组所对应的端电压;uST,sa1(t)~uST,sa3(t)、uST,sb1(t)~uST,sb3(t)、uST,sc1(t)~uST,sc3(t)分别为9个二次绕组所对应的端电压;rArBrC分别为3个一次绕组电阻;ra1ra3rb1rb3rc1rc3分别为9个二次绕组电阻。