二、计算机视觉的发展脉络
在计算机视觉40多年的发展历程中,人们提出了大量的理论和方法。总体来看,可分为三个主要历程,即马尔视觉计算、多视几何与分层三维重建、基于学习的视觉。
1982年,大卫·马尔(David Marr)提出了视觉计算理论和方法,标志着计算机视觉成为一门独立的学科。
视觉计算理论包含两个主要观点:首先,马尔认为人类视觉的主要功能是复原三维场景的可见几何表面,即三维重建问题;其次,马尔认为这种从二维图像到三维几何结构的复原过程是可以通过计算完成的,并提出了一套完整的计算理论和方法。因此,视觉计算理论在一些文献中被称为三维重建理论,其影响深远,至今是计算机视觉领域的主流方法。
从20世纪80年代开始,计算机视觉掀起了全球性的研究热潮,方法理论迭代更新。一方面,瞄准的应用领域从精度和鲁棒性要求太高的“工业应用”转到要求不太高,特别是仅仅需要“视觉效果”的应用领域,如远程视频会议、考古、虚拟现实、视频监控等。另一方面,人们发现,多视几何理论下的分层三维重建能有效提高三维重建的鲁棒性和精度。在这一阶段,OCR和智能摄像头等问世,并进一步引发了计算机视觉相关技术更为广泛的传播与应用。
20世纪80年代中期,计算机视觉已经获得了迅速发展,主动视觉理论框架、基于感知特征群的物体识别理论框架等新概念、新方法、新理论不断涌现。
20世纪90年代,计算机视觉开始在工业环境中得到广泛应用。同时,基于多视几何的视觉理论也得到迅速发展。20世纪90年代初,视觉公司成立,并开发出第一代图像处理产品。而后,计算机视觉相关技术被不断地投入生产制造过程中,使计算机视觉领域迅速扩张,上百家企业开始大量销售计算机视觉系统,完整的计算机视觉产业逐渐形成。在这一阶段,传感器及控制结构等的迅速发展,进一步加速了计算机视觉行业的进步,并使行业的生产成本逐步降低。
进入21世纪,计算机视觉与计算机图形学的相互影响日益加深,基于图像的绘制成为研究热点。高效求解复杂全局优化问题的算法得到发展。更高速的3D视觉扫描系统和热影像系统等逐步问世,计算机视觉的软硬件产品蔓延至生产制造的各个阶段,应用领域也不断扩大。当下,计算机视觉作为人工智能的底层产业及电子、汽车等行业的上游行业,仍处于高速发展的阶段,具有良好的发展前景。