![移动机器人原理与设计(原书第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/158/41517158/b_41517158.jpg)
1.6 习题参考答案
习题1.1参考答案 (伴随矩阵的性质)
1)矩阵Ad(w)的特征多项式计算起来相对简单,如下式所示:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/25t4.jpg?sign=1738976094-mV3Fqo11nLwgsCCUhukWDDgjlIZ52n7o-0-da565e53047f9e28f621a0f60632a9e7)
由此可得其特征值为{0,||w||i,-||w||i}。最后可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t1.jpg?sign=1738976094-G82QefHtKusprWJ9t9XdJf2Z1htsZCFx-0-813da9710a752b8e376f9bc17b27a967)
因此,与0对应的特征向量为w。矩阵Ad(w)是与一个绕w的旋转坐标系的速度向量场相关的。因为轴w不会移动,所以Ad(w)·w=0。
2)①证明x⊥(w∧x)。为此,完全可以证明xTAd(w)x=0,由此可得x⊥Ad(w)x,则有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t2.jpg?sign=1738976094-pqj4CFHLYYF6JzBTBES5SMRD1lPdgRAG-0-2679a91ef2c37c477669e012d5fc7a97)
②因为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t3.jpg?sign=1738976094-2KiQL41SOH6td2xo1zJ2XZiPFRCwtAjE-0-f4a81c162a7182eded777306a5889ee8)
可得w⊥(w∧x)。
③很容易证明:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t4.jpg?sign=1738976094-p1jYZVNaQvsXZ4akgU9vVC63Ip9TrpO5-0-bebb2c0a96ea2f98d0237cb7ebe7fe6c)
为此,需要对上述两个表达式进行转化并证明其相等。该行列式的正性表明该三面体(w,x,w∧x)是正三面体。
3)由w、x和w∧x形成的平行六面体体积为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t5.jpg?sign=1738976094-puNJKwyJI50dSuYLpB3m4uQ4FEspOGKJ-0-68534ee43334c58120c4febdc14554c0)
然而,由于w∧x正交于w和x,因此该平行六面体的体积便等于其底面积A乘以高h=||w∧x||,即
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t6.jpg?sign=1738976094-EYXYbagHFhtsOdvG6eAbiVGnvYYVxZ8A-0-ab023b677719e5530ed73b8cd182ef24)
令v的上述两个表达式相等,可得A=||w∧x||。
习题1.2参考答案 (雅可比恒等式)
1)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t7.jpg?sign=1738976094-DyvQo5YAOuOuPohWhXVQd4Wp0LLqe9LO-0-49667926eb2ae1a48b5a34d8f50986a1)
因此,对所有c而言,都有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t1.jpg?sign=1738976094-GCVeCtAED82YubYcTb60gfeCJBIDYjMX-0-a13151f55422a726eb319fb3ac72f0a4)
即
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t2.jpg?sign=1738976094-JWgz5GVzi43B0tpRfbyF3PMMG3I8dX5c-0-dd4d9d76ffa9a9abde8d031695dfa660)
2)将上式简写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t3.jpg?sign=1738976094-frTctkoTpXy7VUbf9OMvjAh9GRMxovDU-0-263f6686a30d645c31cc89777e39b800)
3)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t4.jpg?sign=1738976094-DwLaii9YQYTIPQ2w7h7G8rOkqpvQXwy1-0-30f6a8666ffba48cbd0bec422d104e77)
因此,对应于一个跟随斜对称矩阵[A,B]=AB-BA无限小的旋转。
综上,如果在一个空间探测器中,只能用惯性盘产生两个跟随A和B的旋转运动,便可生成一个跟随[A,B]的旋转,该无穷小旋转关于B,A,-B,-A,B,A,-B,-A,…交替进行。
4)验证烦琐,在此不做说明。值得注意的是,通过这个结果能够推导出具有加法、括号和标准外积的斜对称矩阵的集合也是一个李代数。
习题1.3参考答案 (范力农公式)
该刚体上的一点x的位置满足状态方程:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t6.jpg?sign=1738976094-qpbzcamhWU4cevRJX7bSQwepwVzSf3zY-0-a9e2d79b121bdb6f2c4c926d33d189df)
式中,w平行于旋转轴Δ,||w||为该实体的旋转速度(单位rad.s-1),通过对该状态方程求积分可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t7.jpg?sign=1738976094-HyLJBH3LAnvVP5vREsY4v5fy1Df5QVBZ-0-668551409a9b04c54280fc0ccf51bcca)
也可利用在习题1.4中所学的罗德里格斯公式得到该公式。该项性质可以用如下事实解释,即Ad(w)表示一个旋转运动,然而它的导数却表示了该运动的结果(即一个旋转)。
习题1.4参考答案 (罗德里格斯公式)
1)完全可以证明:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t8.jpg?sign=1738976094-e6h8GBzWOleslK7vPXLrklmt41ePmBWX-0-54353b2885d5b333e940bf602039a608)
2)该状态方程的解为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t9.jpg?sign=1738976094-dvMOwKosyEl49GEbopobFTdv2FZGi10k-0-84a2014b60d595e41307fc0399a72a8c)
3)在t时刻,该实体已经旋转了||w||·t的角度,那么当t=1时,它便旋转了角度||w||。因此,绕轴w且角度为||w||的旋转R可由下式给出:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t1.jpg?sign=1738976094-dtX45WjymKTaAFTqIsyV1SfXmZ8yA0qC-0-a23ae106ce652c20e2aa2345981581d0)
4)A的特征多项式为,特征值为0,i||w||,-i||w||。特征值0所对应的特征向量与w共线,由于在旋转轴上点的速度为0,故而这是合乎逻辑的。
5)可以通过特征值对应定理得到R的特征值,因此等价于0,i||w||,-i||w||。
6)一个绕向量w=(1,0,0)且角度α的旋转表达式为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t3.jpg?sign=1738976094-ThIH6yTbIliJg632EFqwUBwUgeyLSCJP-0-76af85025464c44a3e7ddc856a1b2c54)
7)罗德里格斯公式表明绕向量w角度为φ=||w||的旋转矩阵可由下式表示:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t4.jpg?sign=1738976094-Emq66yYuzVCx0h90hb83RXrIFkSm4IXy-0-1cf26b53b532f75ac4740eca42158af4)
习题1.5参考答案 (罗德里格斯公式的几何逼近)
1)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t5.jpg?sign=1738976094-CtgiXJRzmCpHdNGczb8a6mvZaFnrz3Up-0-3566b1085d3fe9ad740088c5907f1886)
因此,罗德里格斯公式为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t6.jpg?sign=1738976094-fCRHVdswgz5TDRPXZDdLV4BoRrayFCH4-0-34b8b11331246e3272f0a267dd15acfe)
2)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t7.jpg?sign=1738976094-Q49ihDDRS3bV4VGpqUQCnfXCTGo0loNU-0-c4771c530d41ad02297754dac183682e)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t8.jpg?sign=1738976094-VAboEoO2fIYtbZXvjZnAdRSnk4Z9OGhu-0-be1aa8bbf389b10f20cd778f36f04407)
故而,罗德里格斯公式也可写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t9.jpg?sign=1738976094-c4XiZoG475FQAmrkEjYliKFAkJ7M8tPt-0-6ef2c0714a374601e51ef32220b64be8)
可以通过如下式所示的旋转矩阵去表示算子Rn,φ:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t10.jpg?sign=1738976094-CVNDECb4cW5h1tnCc3A1xhRf2baCPWDf-0-5c9a8f72f552f28d45c25d771fef87ae)
或用其改进形式:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t1.jpg?sign=1738976094-MOZLjOx6MmxjOSoPU0Ho5AuPFr65Nvdb-0-7e685d847346fb2700738325d37c3a11)
3)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t2.jpg?sign=1738976094-rcJyngddBFlI9Y9z5seO8uZHfO9k8Yrz-0-d40d01b66b75ababbbc1dbf508982b01)
向量Rn,φ·u和形成了菱形(罗德里格斯菱形)的两边,其向量:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t4.jpg?sign=1738976094-CuW3Ik9WzvUQxr9IAfWK953Fkny3XZHu-0-6ffe59799d1b825606d951363c4a3986)
对应于菱形的对角线。
4)该轨迹形式为R(t)=exp(tA)·Ra,且必须要找出一个斜对称的A(使exp(tA)是一个旋转矩阵),对于t=0,有R(0)=Ra,对于t=1,有R(1)=Rb。因此,必须要解出exp(A)·Ra或,其中A是斜对称的。可写为
,但矩阵的对数不是唯一的。在该练习题中,假定所有矩阵均为3×3维的。为找出两个旋转矩阵Ra,Rb之间的插值轨迹矩阵,我们取前一个问题的结果并执行以下操作:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t7.jpg?sign=1738976094-B6iyopw7lejMp1A2f4HGiidTOTE6zTLB-0-305a9a17522a9721be3a5a837c61eefa)
进而可得R(t)=exp(tA)·Ra。在此可清晰地看出,找到一个矩阵A使得的解不唯一。例如,本可采用A=(φ+2kπ)n∧,k≠0,但此时从Ra到Rb必须绕几个弯才行。
5)回顾正弦和余弦公式的麦克劳林级数展开为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t9.jpg?sign=1738976094-fFSiOJkch7ZtOCXY4fP8QaMvrOYf2pC6-0-55837049a26b1eaac47b4c59e9c4b4a8)
令H=Ad(n),由于n为矩阵H的一个对应于特征值0的特征向量,则有H(n·nT)=0。此外:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t10.jpg?sign=1738976094-6gdUhKPgwvG0egzL6ThBmoYT7HT9a1Ue-0-14b34a5073278672d0d7806116c4c479)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t1.jpg?sign=1738976094-ZGaMJFIteSkiH1qJfEeFkDHv9RiHHmmu-0-769364e51cd114a761837c73cabde8aa)
那么,可将罗德里格斯公式写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t2.jpg?sign=1738976094-vTH3FceoIRaKdjsdr9suZ76TeAaxNFBf-0-7339802344b525d0826afed1fd77d04c)
即
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t3.jpg?sign=1738976094-okkTulKgu9VJ9050nRN3l6OelCIlhxPo-0-f8efeae8c6bc40d3e799b094d03a89ae)
习题1.6参考答案 (四元数)
1)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t4.jpg?sign=1738976094-XyiVn9s2icqLLOwJAu7zPKeK5BJJTJgf-0-f0e9c0ba52ca331b6fb2f5a2077d5f45)
注意,乘法是不可交换的。
2)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t5.jpg?sign=1738976094-pT4i1KH28cntcA7qAg5ycJw9OztgFgF0-0-8e401a0d1fb192240f652d2380290e48)
3)因两四元数和
对应于相同旋转,则:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t8.jpg?sign=1738976094-L1GhxLiYpcHaEWTtqi53e7XfsbEMgcan-0-4f64a9a7448a0d46bcc4f36326a60b05)
4)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t9.jpg?sign=1738976094-T5t5fSFPLCnCZY2C6Nlk2tv770L2r9BA-0-9c131f9485d889f32e3a5690894306db)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t10.jpg?sign=1738976094-M8vv2RgC4CZk7YQHDgNl7tPdimpETVmj-0-5bb3c1e29d1deb5faf124f3b3d3378aa)
5)①由于旋转很简单,第一种方法是直接通过手动移动一个简单的对象来得到结果。可获得一个相对于(0,1,0),角度为的旋转。
②关联与建立旋转欧拉矩阵R。可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t3.jpg?sign=1738976094-6Ck4eph1h1dBVCaxFDJSNQipvcUGd7Sn-0-2bb0d9d19d129eb56ba266c2f2a56b73)
然后取R的一个与特征值λ=1相关联的归一化特征向量v=(0,1,0)T,旋转R可以通过一个绕v的角度为α的旋转得到,可利用式(1.9)计算角度α:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t4.jpg?sign=1738976094-VezvfTXfXWY40jsgvzNfsaWFRLVxSU3k-0-d0c6f5a96d61e0a28349341fc979299f)
式中,所选符号满足eα·v∧=R,可得。
③在此,利用四元数法可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t6.jpg?sign=1738976094-u7FWvXKuecpKqamryWW8SsZeJE6kLjXC-0-a65558d87cd37c1a3542ec3d1c9b523c)
运用所有方法,可得一个绕v=(0,1,0)角度为的旋转。
习题1.7参考答案 (舒勒振荡)
1)状态向量为,为了实现水平运动,则需一个水平力f,根据动力学基本定理,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t8.jpg?sign=1738976094-SZKNU5QJwWlmeLyOR36Vjykx7vh6inRX-0-9d206de4163e80bdaf52ff48d9fedd47)
式中,且f=2ma。由于
,则该系统的状态方程可写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t11.jpg?sign=1738976094-ITPtdjWpW9WZjzVhfqN9UaE3i81yhPfU-0-f0b1080e593a99f6ee4cf2143fd93166)
2)如果钟摆保持水平,则对于α=0,便有。即:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t1.jpg?sign=1738976094-Ao6DYI54e5xrmUWENgYTYpiX4vueA8NO-0-61a17f7b8eb7c61ff68f4d0da266f098)
或将其等价为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t2.jpg?sign=1738976094-8PtgRhWsU80ZyWwp0YXQ2u5raQn03MHn-0-3baf50f0837e66767de291465530e62a)
因此,必须使其满足方程。求解该方程可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t4.jpg?sign=1738976094-oZAP0BDAfuism9oWCHGyoYpoCuS0zOvC-0-7e2b8ef109fb5806b8c0561e35cc0646)
当1=1时,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t6.jpg?sign=1738976094-v6RpCNjs6lZ12rEHcnMmqhAAQDkmJcnB-0-2d0aa11e7bc51c7e8ddce913745d1abf)
3)描述该振荡的方程为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t7.jpg?sign=1738976094-wQKFTCQjT1HvcPdaIc8ArjjEY57MB5Ak-0-20e461cc4dec5ab6862c6c433b78f2e2)
当a=0时,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t8.jpg?sign=1738976094-aJlidrqAXV6YXNqNnBKKxsmSjqPDYVpD-0-8162b956e9d2c41cd569e61d19323bfe)
该式为一个长=r的钟摆方程。通过对其线性化可得其特征多项式为
,因此脉冲为
。故而,该舒勒周期等于:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t12.jpg?sign=1738976094-MZVd9hP5WjqAp5Jn4AlNC1bHt3UaFHTo-0-ce26b97003b2a249794bfc58e268a81f)
4)程序如下:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t13.jpg?sign=1738976094-wMplMe7JJbZKTFAaN0DupMcSd9pZg8TE-0-d1c2ec3cf3a28d6f683834431a8189d7)
值得注意的是,对于初值而言,该钟摆总是指向地球中心,否则,它便振荡并将该振荡保持在舒勒频率上。可以用现代惯性单元观测该振荡,并有利用其他惯性传感器获取的信息对其进行补偿的方法。
习题1.8参考答案 (制动检测器)
1)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t15.jpg?sign=1738976094-N9vy8XJhZJCWXQKXK1zaWr93wYZpaVJk-0-a370bb1b01d1d765471464383082cf4b)
将其表示在坐标系R0内为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t1.jpg?sign=1738976094-C9htX0jnOqnrmkVuIUtpG2FuKX69BtJt-0-ea0b2233d66e51d55c7c1f3184a9c0f0)
整理为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t2.jpg?sign=1738976094-qx5m2cy3WkEI4cI8J77S4IktBH1eMvQX-0-814fc79e273ed1e2cc79268a64675000)
2)证明:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t3.jpg?sign=1738976094-N6tYsNiLLXFg6Xlr3fHVCvOeYQhT5A0S-0-72c3d7a889266886c7504b7cbf4d739a)
3)在坐标系R0内,可将向量u表示为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t4.jpg?sign=1738976094-qyCiYFYXxgbbLd0PPb2GeKpm22iZGbXg-0-37f299271b1661a06f6895fe567a1ef2)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t5.jpg?sign=1738976094-w514jmucTCDszLqSIkNb8moXMczuE7ir-0-cc54dc1a20e192b9fbbd3b9306a316bc)
4)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t6.jpg?sign=1738976094-EG64s1tM2kYTWmdvR0CU7y5n7TtB3xau-0-a14ba4da2f0c24931ecb08a8bbeb58a1)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t7.jpg?sign=1738976094-Y8lrMuOzCut1SfUixXVF3NINbkHx7Clm-0-9b5befa6e0466322a8e558423608be37)
然而:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t8.jpg?sign=1738976094-ZXhlhQLuX7i5bnZnFClLdkZdD4Tf3OuZ-0-17681fe612ca7894547a90c978f202cd)
可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t1.jpg?sign=1738976094-A4pw6ULZ51MpJJTOi6s7E1chmsomtgLg-0-961a3c418baf877b6c6ef0380554e8c8)
5)如果满足下述条件,则表示前车正在制动:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t2.jpg?sign=1738976094-Slu5OTJYXUMEiPg89jzVKSfIqexdKOji-0-50dad77709a12bc6e47e787ba3a2df4c)
即满足条件:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t3.jpg?sign=1738976094-coPQt9jcf8mvT0SG9kVuzoM5zORAABQP-0-f3594c3f3d078fc732663e39d282a7e5)
习题1.9参考答案 (水下机器人建模)
该位置向量的导数可由下式得到:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t4.jpg?sign=1738976094-IlBeqVKGfyrwiRj29lMubNX6zv2PcPiT-0-21b49c08d8d9c8b756dd0f50fe2f9e20)
式中,i1对应矩阵(1.9)的第一列。结合方程(1.12),可将潜艇的状态方程写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t5.jpg?sign=1738976094-wo30DRMeiDWg0UP7wpIw2WdobEBvId2f-0-2ddbbed669d39e5d7b417ee03d88ec5d)
此时,便得到了一个运动学模型(即其中没有力或力矩),其中并没有参数,因此如果该水下机器人很结实(即不能被扭曲)且其轨迹与机器人轴线相切,便可认为该模型是正确的。这样的模型将用到非线性控制方法如将在第2章提及的反馈线性化。虽然这类方法对于一个很小模型误差的鲁棒性确实很差,但对系统精确模型已知的情况下却非常有效。
习题1.10参考答案 (三维机器人图形)
1)略
2)为绘制在状态x=(px,py,pz,v,φ,θ,ψ)下的机器人图像,构建模式矩阵:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t6.jpg?sign=1738976094-GcZf2zzaDNZ0gh33J2kLY99ejYpEjcg7-0-5411a424546c99b80d1c96ce37a89698)
并计算转换后的模式矩阵(待绘制):
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t7.jpg?sign=1738976094-yX8VSGG09QQrXqRsDcYHFwGb8t1MLUgI-0-235fd8c5300fd6de31ff823a51d8fa02)
绘制三维图形的MATLAB程序如下:
3)采用图1.19所示的欧拉积分法对初始向量x(0)=(-5,-5,12,15,0,1,0)T和控制变量u=(0,0,0.2)T进行仿真。该仿真模拟将在习题2.4中进行,以执行机器人轨迹的控制。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a19.jpg?sign=1738976094-lhXYcddfPjMWg5enbOUsYiMJYS8uxRwz-0-738bacbdae3d0d50fd168bf135d8b44d)
图1.19 水下机器人的仿真(有关此图的彩色版本,见www.iste.co.uk/jaulin/robotics.zip)
习题1.11参考答案 (机械手)
绘制机械手时必须一个接一个进行,为此,必须建立基于向量v的平移和绕w角度||w||的旋转。由如下两个矩阵表示:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/35t1.jpg?sign=1738976094-SApqOlQtXkv72n740Hro5TebcfjbhsWA-0-beed0f6e75cd4a5ba7722be5bf921ebc)
在该题中,需要沿z轴平移长度r,沿x轴平移长度d,围绕y轴旋转α,旋转θ。它们分别由4×4矩阵给出:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/35t2.jpg?sign=1738976094-7i1hLfZlkjoGe5cSkWmrjWHxUSeJZGX5-0-70f80831a2e2e583bfb960d3dcf66721)
在坐标系q(其组成部分为关节坐标)中的机器人的七个手臂可以绘制如下:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/35t3.jpg?sign=1738976094-v2WZwVJa7mQwki9FKUEu50M37mJ4CM5Y-0-86221714c4f31c174dba70d8ae99bd7c)
每个手臂均是用两个齐次矩阵,j
{1,2,…,7}对绘制的。图1.20对应于具有以下参数向量的机器人的仿真模拟:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t1.jpg?sign=1738976094-nEWoLZDJ1gpcL8urLtUQcG8lZjJ6wzzC-0-5e625c470e4306df9cd19fe96ff53b6e)
习题1.12参考答案 (浮轮)
1)考虑欧拉旋转方程:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t2.jpg?sign=1738976094-4eJOYXhw0c7Fb735cnnjHB0gy5gr5wry-0-eea64db2fd0b199f6ed08ed19dea818b)
式中,扭矩τr=0且浮轮没有加速度。由式(1.12)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t3.jpg?sign=1738976094-uYygRv3LAsdQWCijS1QlyGZ4oThFtOV5-0-118609ee1429eda61783f4c998eb3419)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a20.jpg?sign=1738976094-eeZ3yxKzAJAPndHRT2DqonaQQR7gLcjT-0-0c0669182600df8a574789a1551a98ae)
图1.20 机械手仿真模拟
2)对于仿真模拟,取:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t4.jpg?sign=1738976094-yLIdhPRit7QAFFJUyUJ7VtpnTUBx4jIU-0-da676db53574649b0be5bbe225640450)
其结果如图1.21所示,轮子相对于px平移,可从px阴影(黑色)中看到旋转轴振荡,这便对应于该进动。
3)已知:,因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t6.jpg?sign=1738976094-xrnqL3iItqrEdtXDoZmIICZrbVAZ7OXE-0-9fbf4b48f3ad5b6b81a56f6944fa321f)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a21.jpg?sign=1738976094-juMibKPTFgFuebk9WAmYIerxVyZoxJoH-0-e0b6a571bf9da0788e1f33c178f2ee6b)
图1.21 无转矩进动车轮的运动(有关此图的彩色版本请参见www.iste.co.uk/jaulin/robotics.zip)
此外:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t7.jpg?sign=1738976094-1jdzFxqo189X2VyQYPrRzhtikxA08E9N-0-89ff2f4507b21f58dba2d507f828d6d8)
4)使用SYMPY库编写以下Python代码:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/37t1.jpg?sign=1738976094-V0IywiAHrLRkUWQ3lBaDdNiEVoPlSJuQ-0-341802e97220e5095a501572e890035a)
x0点处的矩阵J如图1.22所示。
可通过图1.23中的图示来理解带零的黄色块,弧表示差动延迟,例如,节点vr和p之间的弧意味着在代数上依赖于vr。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a22.jpg?sign=1738976094-Bakytpu4JOfaERs2poI0HhNd3hMfmoES-0-ba222982a342db34df8f070b1240a1c1)
图1.22 x0点处演化函数的雅可比矩阵(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a23.jpg?sign=1738976094-1wQ31KEcRrf9Emr3wR1XYufuVm1q8Ejv-0-98975ef9c3da77d7de0db6884c663073)
图1.23 浮轮差动延迟图(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
矩阵J是分块三角形的,可以很容易地计算出特征多项式,由下式给出:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/38t3.jpg?sign=1738976094-U08rMmLKuJU4eAtXSVyXzwriOCsjyijd-0-94378c3428988e9deb4e54a0ecc28572)
当不存在进动时,项与事实情况一致,轮子以||wr||脉冲绕wr旋转,
和
对应于该进动。
如果轮子不是完全实心的,内部摩擦会减弱进动,旋转轴将与I的一个特征向量对齐,该向量可以是车轮平面的一个向量,也可以是车轮的轴(与车轮平面正交)。
习题1.13参考答案 (惯性系中的舒勒振荡)
1)因为地球静止不转动,则有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/38t7.jpg?sign=1738976094-fCY3uOX8MXvP8Ft95xJbz7vHZ67X8h3j-0-0188d66c16b3e5dab4b8ae1ba72af48e)
2)R2的所有欧拉角都是常数(对于R1)并且等于零,且不再作为状态变量出现。欧拉矩阵R(φ,θ,ψ)为常数。R2的状态方程变为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/38t8.jpg?sign=1738976094-ag4dfl7hkfSWgo1gxh8zCszlvJKfSDUn-0-cd843a66dbf39bdced812795c7565235)
可以将其写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/39t1.jpg?sign=1738976094-HPToDXMvLtPrOAJGSJJz30G7biimfUX8-0-1d7d54f16fffb77bfd08144a5fcb0d76)
3)所得到的轨迹如图1.24所示。从图中观察到一些振荡,称为舒勒振荡。
4)z=0,x=r,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/39t2.jpg?sign=1738976094-ziADYkkfeo3gKJmELlc8oCKrduzVjLAF-0-fbb0ca00152b114b30b026a1847decda)
特征值为,由于在0中有两个根,所以这个系统存在一些振荡,是不稳定的。
5)实际上,惯性单元没有完全初始化,因此便可找到一条与R2相似的轨迹,而对于R1而言是固定的。由于误差很小,线性近似是很现实的。如图1.25所示,惯性单元内部的积分方法返回一些不需要的振荡,对应于一个不是实际的解。这些振荡对应于一个为的舒勒周期。对于许多应用(例如在飞机上),大家知道这样的振荡是虚拟的,可以通过改进积分的方法来抑制这些舒勒振荡。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a24.jpg?sign=1738976094-TjtJhgtwt9Eyoz1uNytc7lTcxNflKpk3-0-db881efc72b0faefdd2462bd3b64630d)
图1.24 轨迹涂成蓝色的机器人R2和固定在o1中的机器人R1的转速和加速度相同
习题1.14参考答案 (控制用李氏括号)
1)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/39t5.jpg?sign=1738976094-RbBNEIdS9zEfNWhJnFzoHqXd07lndKic-0-a6b8890cbae46593e770ea3906cbe1cf)
2)在不丧失一般性的情况下,对t=0给出其证明,并将使用以下符号:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/39t6.jpg?sign=1738976094-akKbAtUbBhWlOfNcsfuQ5QTlgvjpMAm8-0-ada7305517aa931baaee41448aa2f0da)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a25.jpg?sign=1738976094-HXeTepAJCnEW9ASTbxbPvkUVR3pqtrMX-0-96b19b511fbdb30456c35dab6951f862)
图1.25 惯性装置返回的假周期轨迹,感觉和R1一样是静止的。相应的测量加速度涂成红色。b)图对应于R1的放大(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
对于给定的t和一个小的δ,有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t2.jpg?sign=1738976094-cSuhP2q1I5ZsYTjBySLfVEtz2ok8l8g1-0-42ccba5565c49ebe6b4f6c0d3462dbfe)
其中:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t3.jpg?sign=1738976094-4WJgQBLgGlSfYrU48hXIMpXjvknAp14w-0-560cccbb335df7963c2f7774ec95dab9)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t4.jpg?sign=1738976094-J9kL352XyNSclL4bpU8kKe6qYJhGvH2c-0-5eb45a55ee0ebf2645bbca4d6d0a30d8)
可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t5.jpg?sign=1738976094-g8q6wRMQi8DxcI8aHPQFU2isH6es0c0b-0-0333d2f238c2b36b014f22ab700a1232)
相加可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t6.jpg?sign=1738976094-7qEbwcwnP72LEQYmJihhoYzqe0mzsKQ2-0-ff6c1bc4a3e3e64185dbb805a1f4d650)
此时:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t7.jpg?sign=1738976094-HleiXqgYTDEaGybPN45dt0snqPOPzEFX-0-72063a94038ecfe6c5f916d719abde0e)
因此,
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t1.jpg?sign=1738976094-kvv0PoNRod3C5FRHJDRfOr6zwNUSV1v8-0-65f3d65bd67bacd4c8d5cdf134ab952b)
同理可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t2.jpg?sign=1738976094-yW4amhtOwDE0kB6hRUI6bwMFNexSy9PU-0-7957cd6deaaf32f2c3d8cb0cda5dd45b)
这个结果可以通过重写δ→-δ,f→-g,g→-f,A0→-B0,B0→-A0直接从式(1.19)中获得,因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t3.jpg?sign=1738976094-7Hjh2GmlAnrYGI5PAzhTcn6BRqtc3CCZ-0-c646fa4792c98cdd7b56f63aec035046)
其结果是,使用周期序列,便可以沿着[f,g]方向移动。
3)已经证明,在4δ的时间周期内,我们向[f,g]方向移动了[f,g]δ2。这意味着我们遵循这个无穷小的场。将循环序列乘以标量α
R等于用α乘以f,g。那么,不得不用
乘以这个序列。如果º为负,则必须改变序列的方向。因此,循环序列为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t6.jpg?sign=1738976094-t7VqB1UNFb6YQbWMe9dzkGBPripeaE4K-0-e9c98f206385512939890921c7b50fb8)
式中,ε=sign(v)更改序列的方向(ε=1为顺时针方向,ε=-1为逆时针方向)。
4)如果想要跟踪a1f+a2g+a3[f,g],则须按该序列:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t7.jpg?sign=1738976094-36R6kIoKy30FMBEEnZKSjzlSC57pwWPa-0-da4e0e0877b05223d8401f6026b991b1)
式中,,且ε=sign(v)。
5)如果令x=(x,y,θ),则有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t9.jpg?sign=1738976094-DIFuzHR9puA5Y0YPAbmamCNQEsOIqVkA-0-776f9d676e23b39e524db5a954a1c3d2)
可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/42t1.jpg?sign=1738976094-3Q2Tc0Fjo88ksqUmUaw3KuSihm2yF2ID-0-fbdcd6acb9b1bdcd68c0d8d06fc57925)
此时便可横向移动汽车了。
6)如果把循环序列作为控制器,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/42t2.jpg?sign=1738976094-DDJucoGmlFa49k6iEkM6xLi90oGFJmYK-0-3992801dee37b1876f117cea8132264d)
针对a=(0.1,0,0),a=(0,0,0.1),a=(-0.1,0,0),a=(0,0,-0.1)做了四个仿真模拟。取初始向量x(0)=(0,0,1),t[0,10],dt=0.01,便可得到图1.26所示的结果。经过观察,在每次模拟之后,到原点的距离大约为0.1×10=1。这与f(x)和[f,g]的范数等于1的事实一致。在此,并未给出a=(0,±0.1,0)的仿真,因为没有位移:汽车自己旋转。
7)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/42t3.jpg?sign=1738976094-9JjMSnI0PpHcCN0rR9qVJIsZHxQcGyLa-0-536fb41267c8e3d51a3a58964d38196d)
取可得
,式中
。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a26.jpg?sign=1738976094-UYUFYCLEXK9Y1bGnkyvaManBIqpBCY8L-0-2aa3fa6139d4261cbc1de86ea1baf877)
图1.26 a)基于李氏括号技术的控制器仿真,框架为[-1,1]×[-1,1]。b)相同的图片,但框架为[-0.2,0.2]×[-0.2,0.2]。为了避免图片中的重叠,这辆车的尺寸缩小了1/1000。前后亚通道的长度约为10cm(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
对于序列所需的方向:=(1,0,0),
=(−1,0,0),
=(0,−1,0),
=(0,1,0)。可得图1.27所示的结果。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a27.jpg?sign=1738976094-3RL7q17AQHVrEkVQ3AE582iMgtZ4RpvK-0-6c510282b94864341ddddfec018b826b)
图1.27 a)汽车从0向所有主要方向行驶。框架为[-1,1]×[-1,1]。b)相同的图片,但框架为[-0.2,0.2]×[-0.2,0.2](有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
习题1.15参考答案 (跟踪赤道)
1)从一帧到另一帧的旋转矩阵为Rij=RiTRj,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t2.jpg?sign=1738976094-Q8I4UmYsCewj7x9uv0uxOlFGIgb6BEF8-0-c201c63663475180061cdb5ea4cc357d)
2)式(1.13)所示的运动学方程为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t3.jpg?sign=1738976094-qg238AUnQd1qOFSiNbx66dfJqnAprgu1-0-6e4203de7e13a603bfc79b8f4f70b98e)
在仿真模拟中(见图1.28),可观察到轨道对应于一个椭圆,这与卫星的行为是一致的。物体的旋转是由初始条件引起的。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a28.jpg?sign=1738976094-yRy9KIiXUucRKRCvkQYIEoTIajzJlrVP-0-bd1d794a30cffa201ffc3fd2ce6eef25)
图1.28 该机器人像卫星一样绕着地球转(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
3)动态模型由运动学模型组成,可在其中添加以下状态方程以生成输入a3,w3(见图1.29):
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t4.jpg?sign=1738976094-DcTM4tF1FAW9ay1aCiwhnvaGStiaHK0w-0-b27788dc2e0307473a708e7e326bd589)
这个动态(左)块在状态变量中有w3。
在此来解释第一个等式:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t5.jpg?sign=1738976094-qUbeICkX2Fu9BbMpBmKI6yi6ltqZgoX6-0-e8b480a0e2b211041acf4dde8a3f459d)
由该摩擦项可得,机器人将停止相对于水的旋转,从而收敛到地球的旋转方程上。对于这个摩擦力,应该加上来自方向舵或螺旋桨的旋转。
第二个方程由三项组成:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t6.jpg?sign=1738976094-wMtw5CLeNbSKuaeqvlElBZO4IuCAyoeL-0-585dcb816cc5b2333f81f435756416a0)
①由于摩擦而产生加速度。作为第一近似,可以假设加速度与机器人和流体之间的速度差成正比。由于流体的速度为vf=wE∧p,可得摩擦力所引起的加速度,在R3坐标系下近似为。
②流体在p处的加速度为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/44t2.jpg?sign=1738976094-0JBrey33iyQaAXT6R1bu2mM2WfDJ3VkK-0-37ecb650cf29815ab59a0b3bec7d0376)
如果机器人相对于流体是静止的,并且具有与流体相同的密度,那么它将具有阿基米德力产生的加速度。现在,由于重力,将测量R3坐标系下加速度
。
③由螺旋桨产生的加速度ua3表示在机器人坐标系R3。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a29.jpg?sign=1738976094-hiUAqRhl1vuWDcSW1oocslRAHO6TceZW-0-0e3b84a933711c63cacf6ec26c576c07)
图1.29 动力学模型
4)为了控制机器人的方向,考虑了一种位姿场方法,即在每个点p上关联一个机器人试图满足的姿态(用旋转矩阵R4表示)。例如,如果我们想沿着赤道从西到东,则可选择一个位姿场:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/44t5.jpg?sign=1738976094-Crp0ULezpUh1cjY2p4OCcw0SYgwUvaPH-0-f3c8aaacfd8a6ff16171a69b950e7e36)
然后,为使R3近似于R4(p)的控制选择旋转向量,可得(见式(1.6)):
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/44t6.jpg?sign=1738976094-27Lj2igcyrRZYpuGOzRHt2XXIe0MzOjc-0-5b0fd84cb3e8440e9eb5159a007f0440)
其中,,
。相应仿真如图1.30所示。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a30.jpg?sign=1738976094-RmR0DhWCccjFMPtgKfFMoU0HxfqmsNGW-0-728a5af3f66826b047ccc041f9397182)
图1.30 机器人沿着赤道向东行驶(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)