1.4 数字阀控制技术
阀控液压系统依靠控制阀的开口来控制液压执行元件的速度。液压阀从早期的手动阀到电磁换向阀,再到比例阀和伺服阀。电液比例控制技术的发展与普及,使工程系统的控制技术进入了现代控制工程的行列,构成电液比例技术的液压元件,也在此基础上有了进一步发展。传统液压阀容易受到负载或者油源压力波动的影响。针对此问题,负载敏感技术利用压力补偿器保持阀口压差近似不变,系统压力总是和最高负载压力相适应,最大限度地降低能耗。多路阀的负载敏感系统在执行机构需求流量超过泵的最大流量时不能实现多缸同时操作,抗流量饱和技术通过各联压力补偿器的压差同时变化实现各联负载工作速度保持原设定比例不变。
数字阀的出现,与传感器、微处理器的紧密结合大大增加了系统的自由度,使阀控系统能够更灵活地结合多种控制方式。数字阀的控制、反馈信号均为电信号,因此无需额外梭阀组或者压力补偿器等液压元件,系统的压力流量参数实时反馈控制器,应用电液流量匹配控制技术,根据阀的信号控制泵的排量。电液流量匹配控制系统由流量需求命令元件、流量消耗元件执行机构、流量分配元件数字阀、流量产生元件电控变量泵和流量计算元件控制器等组成。电液流量匹配控制技术采用泵阀同步并行控制的方式,可以基本消除传统负载敏感系统控制中泵滞后阀的现象。电液流量匹配控制系统致力于结合传统机液负载敏感系统、电液负载敏感系统和正流量控制系统各自的优点,充分发挥电液控制系统的柔性和灵活性,提高系统的阻尼特性、节能性和响应操控性。
相对于传统液压阀阀芯进出口联动调节、出油口靠平衡阀或单向节流阀形成背压而带来的灵活性差、能耗高的缺点,目前国内外研究的高速开关式数字阀基本都使用负载口独立控制技术,从而实现进出油口的压力、流量分别调节。瑞典林雪平(Link Ping)大学的Jan Ove Palmberg教授根据Backe教授的插装阀控制理论首先提出负载口独立控制(Separate Controls of Meter-in and Meter-out Orifices)概念,在液压执行机构的每一侧用一个三位三通电液比例滑阀控制执行器的速度或者压力。通过对两腔压力的解耦,实现控制目标速度控制。此外,在负载口独立方向阀控制器设计上,采用LQG最优控制方法。在其应用于起重机液压系统的试验中获得了良好的压力和速度控制性能。丹麦的奥尔堡(Aalborg)大学研究了独立控制策略以及阀的结构参数对负载口独立控制性能的影响。美国普渡(Purdue)大学用5个锥阀组合,研究了鲁棒自适应控制策略实现轨迹跟踪控制和节能控制。其中4个锥阀实现负载口独立控制功能,一个中间锥阀实现流量再生功能。德国德累斯顿工业大学(Technical University Dresden)在执行器的负载口两边分别使用一个比例方向阀和一个开关阀的结构,并研究了阀组的并联、串联以及控制参数对执行器性能的影响。德国亚琛工业大学(RWTH Aachen University)研究了负载口独立控制的各种方式,并提出了一种单边出口控制策略。美国明尼苏达(Minnesota)大学设计了双阀芯结构的负载口独立控制阀,并对其建立了非线性的数学模型和仿真。国内学者从20世纪90年代开始对负载口独立控制技术进行深入研究,浙江大学、中南大学、太原理工大学、太原科技大学、北京理工大学等均在此技术研究与工程应用方面取得相关进展。
负载口独立控制系统原理如图1-18所示,其优点主要体现在:负载口独立系统进出口阀芯可以分别控制,因此可以通过增大出口阀的阀口开度,降低背腔压力,以减小节流损失;由于控制的自由度增加,可根据负载工况实时修改控制策略,所有工作点均可达到最佳控制性能与节能效果;使用负载口独立控制液压阀可以方便替代多种阀的功能,使得液压系统中使用的阀种类减少。
电液比例控制技术、电液负载敏感技术、电液流量匹配控制技术与负载口独立控制技术的研究和应用进一步提高了液压阀的控制精度和节能性。数字液压阀的发展必然会与这些阀控技术相结合以提高控制的精确性和灵活性。
图1-18 负载口独立控制系统原理