Matlab在水资源优化与水库调度中的应用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第1章 分解筛选法求解线性规划的概念和方法及多重解求解

1.1 分解筛选法思路、要点及示例

1.1.1 分解筛选法及有关概念

线性规划法经过多年的发展完善,已趋成熟,其中单纯形法最为著名,但是单纯形法属于指数型算法,因此求解效率不高,并存在着死循环等问题,分解筛选法应运而生。分解筛选法可把一个n维的LP问题分解成n个一维的子LP问题,由此筛选出通过最优解角点的有效约束,并把它看作等价于一个等式约束,利用这一思路和特性,可大大简化整个求解步骤,解决了单纯形法存在的一些问题,有更好的应用前景。

1.1.2 解题步骤

在解题时,使用分解筛选法的思路为:①若线性规划问题非空且有界,则其最优解必在其约束凸集的边界或某一角点上;②最优解所在之角点或相切之边界,其对应的起控制作用的诸约束条件此时必然恰好满足,从而具有等式约束的特性,可用这样的等式通过消元法使问题连续降维;③当多次降维把一个n维的LP问题分解为n个一维子问题时,就可以使用约束超平面在各子问题坐标轴上的截点的概念,来求得这些子问题各自的独立“最优解”,称初优解Zi,然后选出此n个初优解中最大者(对求最大问题而言)Z初max。可以证明,此最大初优解所对应的子问题和约束方程,就指出了系统最优角点所通过的那些约束之一。一旦找出了这种约束就可如②中所述使问题连续降维;可将步骤重复进行,直至问题降为一维方停止降维,或筛选完了全部m个约束后,即可通过回代求得最后解答。

为了便于说明和具体理解上述思路和步骤,借助算例来阐述,以加深理解。设有一个三维线性规划问题如下例。

例1-1

求:

对于此题应先进行一维分解,把此三维问题分解为x1x2x3三个一维子问题,并求各子问题之初优解Zi。为方便和明晰解题思路,解题步骤可以通过列表进行,如表1-1所示。在表1-1含ci的行中,1、2、3为各目标函数式变量的系数,如式(1-1)所列。

表1-1 分解筛选截点ITZ计算值

注:∗表示xi列中的最小值,∗∗表示Zi行中的最大值。

对于每一个子问题,例如对x1子问题,先分别求约束方程(即约束平面)[式(1-2)、式(1-3)、式(1-4)]在x1轴上的截点,此截点是令式(1-2)~式(1-4)中除x1以外的变量均为零时得出的,其表达式为:

式中,ITji为第j约束线在第i个变量轴(即xi轴)上的截点值;aji为约束条件式的系数;bj为各约束式右端的常数项;ji为约束条件和变量的序号。

然后,选xi列诸小于或等于截点值ITji中的最小者(表1-1中数值带∗者),对x1轴而言就是6和其对应的约束式(1-3)。再将此最小截点值6乘以目标函数的对应系数c1得第一子LP问题的初优解Z初1,即Z初1=c1ITjimin。一般有:

由于Z初3=18为表1-1中最大的Zi,相应的变量为x3,式(1-4)为约束条件,由此可知,全系统的最优解必通过此约束平面式(1-4)。下一步是将式(1-4)看作等式,进而解出x3

然后将式(1-8)代入目标函数式和其他约束方程,这样就得到一个降维后的新LP模型:

该模型与前一个一样,它可再次做一维分解筛选。不过对于目前这一类型,由于为负,且属于退化Ⅰ的情况,故解是简单的,即有=0,从而又有:

把它们回代至式(1-8)中,得,而最优解为:

x1x2x3=(2,0,6),Z=20

解毕。

分解筛选法解题流程图如下:

若计算时Z初max同时出现在两个以上的列中,则把不同行的相应约束方程都可看成是等式约束,进而可以联解消元。这样,明显可使计算效率提高,简化计算。

例1-2

求:

在对上面所列九维LP问题进行分解之前,可简单判别出变量x9属于退化Ⅰ(即c9<0,Aj9≥0,j=1,…,9)。故有,并可先行从模型中剔除有x9的项。然后再次分解此八维LP模型,并一一列出所有一维子模型截点值的计算,如表1-2所示。

表1-2 分解筛选法——ITiZi计算

注:右上角有√为该列的最小截点值。

在计算截点值时,凡是约束式中系数为负的部分,不需要计算,因其已不在第一象限,系数为零者,只需要取每列中的最小截值点,故也不必列出。

在表1-2中,Z初max为+0,它同时出现在x2x3x5x6四个子问题中。由此可知,全系统的最优解通过四个相应的约束式[式(1-15)、式(1-16)、式(1-17)、式(1-18)]。把上述四个方程式作为等式联立,通过解出上述的四个变量,可得出下列结果:

把式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]代入目标函数式(1-14)、式(1-19)和式(1-21)。由于式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]都只是单变量之间的比例关系,可使式(1-22)必然满足,不需要再次代入引进有关于xi≥0的新约束。于是可得降维后的新LP模型:

在上述式中变量x4属于退化Ⅰ条件,故,并可将其在LP模型中剔除。对于新的LP,再次做一维分解筛选表(见表1-3)。

表1-3 一维分解筛选表

注:右上角有√者为该列的最小截点值。

通过表1-3可得Z初max=500相应的变量为x1,约束式为式(1-19),于是可由式(1-19)解出x1

再把式(1-19)′代入式(1-14)′、式(1-20)′、式(1-21)′,可得第二次降维后的新LP模型:

在上面的新LP模型中,x7符合退化Ⅰ的情况,可知以及x8≤50,在目标式中已无任何未解变量,再将的值回代到式(1-19)以及式[1-23(a)]、式[1-23(b)]、式[1-23(c)]、式[1-23(d)]和式(1-14),可得:

至此解毕。

分解筛选法解题流程图如下: