Machine Learning for Finance
上QQ阅读APP看书,第一时间看更新

Setting up your workspace

Before we can start, you will need to set up your workspace. The examples in this book are all meant to run in a Jupyter notebook. Jupyter notebooks are an interactive development environment mostly used for data-science applications and are considered the go-to environment to build data-driven applications in.

You can run Jupyter notebooks either on your local machine, on a server in the cloud, or on a website such as Kaggle.

Note

Note: All code examples for this book can be found here: https://github.com/PacktPublishing/Machine-Learning-for-Finance and for chapter 1 refer the following link: https://www.kaggle.com/jannesklaas/machine-learning-for-finance-chapter-1-code.

Deep learning is computer intensive, and the data used in the examples throughout this book are frequently over a gigabyte in size. It can be accelerated by the use of Graphics Processing Units (GPUs), which were invented for rendering video and games. If you have a GPU enabled computer, you can run the examples locally. If you do not have such a machine, it is recommended to use a service such as Kaggle kernels.

Learning deep learning used to be an expensive endeavor because GPUs are an expensive piece of hardware. While there are cheaper options available, a powerful GPU can cost up to $10,000 if you buy it and about $0.80 an hour to rent it in the cloud.

If you have many, long-running training jobs, it might be worth considering building a "deep learning" box, a desktop computer with a GPU. There are countless tutorials for this online and a decent box can be assembled for as little as a few hundred dollars all the way to $5,000.

The examples in this book can all be run on Kaggle for free, though. In fact, they have been developed using this site.