中国临床肿瘤学进展2014
上QQ阅读APP看书,第一时间看更新

滤泡细胞来源的甲状腺癌的分子病理特点

梁智勇 陆俊良

北京协和医院

甲状腺癌是最常见的内分泌恶性肿瘤。按组织形态特点,主要可以分为甲状腺乳头状癌,甲状腺滤泡癌,甲状腺髓样癌,低分化以及未分化癌,其中除了甲状腺髓样癌起源于神经棘衍化的滤泡旁C细胞外,其余四者都来源于甲状腺滤泡细胞。甲状腺乳头状癌在上述五种甲状腺癌中最为常见,约占甲状腺癌人群的87.3%,其后为甲状腺滤泡癌,约占8.4%,未分化癌和髓样癌则分别占所有甲状腺癌的0.9%和1.8%。近年来有关甲状腺癌的分子改变的研究很多,甲状腺癌中常见的信号通路中分子的改变包括RAF基因点突变、RET\PTC基因重排,RAS基因、PAX8\PPARγ基因重排,PI3KCA和CTNNB1的基因改变,以及NTRK,TP53,PTEN,还有IDH-1和TERT启动子的点突变等。本文针对以上分子改变在滤泡细胞来源的甲状腺癌中的作用机制作一概述。

一、 甲状腺乳头状癌的分子改变

在甲状腺乳头状癌中发生频率较高的分子改变主要有BRAF基因突变、RET/PTC基因重排以及RAS基因突变,PAX8/PPARγ重排以及PTEN/PI3K/Akt/mTOR信号通路上的分子改变也偶有报道。目前对BRAF基因突变在甲状腺乳头状癌中的作用的研究最为透彻。

1. BRAF基因突变

BRAF全称为鼠类肉瘤病毒同源基因B1(V-raf murine sarcoma viral oncogene homolog B1),BRAF在甲状腺乳头状癌中的突变最常见的为第1799号碱基上胸腺嘧啶被腺嘌呤取代,导致BRAF基因的第600个密码子编码的氨基酸残基由缬氨酸变为谷氨酸(BRAF V600E)。BRAF V600E突变可使MAPK信号通路持续激活而不再依赖胞外活化信号的调控,从而表现出更强的增殖、侵袭及转移潜能。除此以外,BRAF V600E突变阳性的细胞系中,PI3KCA/Akt/mTOR信号通路被激活,细胞侵袭能力增强。近年来发现BRAF突变的甲状腺乳头状癌细胞对碘的摄取效率降低,可能因此导致对放射性碘治疗相对不敏感。这是由于在BRAF突变型的甲状腺乳头状癌细胞中,钠碘共运体(sodium/iodine symporter,NIS)基因的启动子去乙酰化,导致其表达较野生型细胞低。在人们发现单一针对BRAF基因的抑制剂对甲状腺乳头状癌无效后,NIS作为潜在的治疗靶点,成为新一轮的研究热点。
在甲状腺乳头状癌中,BRAF V600E总体突变频率约为40%~70%,并且近年来突变率有增高的趋势。Xing等进行的大样本回顾性研究表明,BRAF V600E突变阳性患者总体死亡率高于野生型患者。而对于BRAF V600E突变与淋巴结转移、复发和远处转移等不良预后因素是否存在独立的联系,各家的报道并不一致。BRAF V600E突变频率在甲状腺乳头状癌不同的亚型中各异,如经典型甲状腺乳头状癌的突变发生率有报道为68%,滤泡亚型的突变率则较低,约为10.6%~18.8%,高细胞亚型的突变率可高达80%以上。

2. RET/PTC基因重排

RET(rearrange during transfection)是一种原癌基因。正常情况下,RET仅在神经棘来源的滤泡旁C细胞表达,在滤泡细胞中不表达或仅有非常少量的表达。RET基因发生重排后,其酪氨酸激酶区与别的基因的启动子结合,表达有酪氨酸激酶功能的融合蛋白,导致下游的MAPK信号通路持续活化。
RET/PTC重排在甲状腺恶性肿瘤中仅见于甲状腺乳头状癌,但也可见于部分良性的甲状腺结节。在甲状腺乳头状癌中最常见的两种RET/PTC重排为RET/PTC1以及RET/PTC3重排,分别产生CCDC6-RET和NcoA4-RET两种融合基因。在散发性的成人甲状腺乳头状癌中,RET/PTC重排在甲状腺乳头状癌的发生率从20%到40%均有报道。不同研究之间的差异不排除由地缘因素引起,但更有可能为采用的方法学不同以及肿瘤异质性所致。有报道儿童散发性甲状腺癌病例中RET/PTC重排发生率可达45%,远较成人为高 [16]。而在辐射后的甲状腺乳头状癌中发生重排的几率远较散发性的病例为高,可达60%~70%。RET/PTC重排与甲状腺乳头状癌的临床病理联系目前尚不明确,有报道表明RET/PTC1多见于甲状腺乳头状癌的经典型而RET/PTC3多见于实性型,且可能与淋巴结转移相关。

3. NTRK1重排

NTRK1(neurotrophic tyrosine receptor kinase,神经营养酪氨酸受体激酶)基因的产物NTRK1蛋白是一种跨膜受体,主要激活MAPK信号通路,介导细胞的生长及存活。
在甲状腺恶性肿瘤中,NTRK1重排仅在甲状腺乳头状癌中有报道,发生率约12.6%,并且与不良预后相关。

4. RAS基因突变

Ras是MAPK信号传导通路上非常重要的一环,RAS基因12、13外显子的点突变导致Ras与GTP保持结合的状态,而61外显子突变则使GTP酶活性下降,无论何种改变都会使Ras持续激活,令下游的通路保持活化,导致肿瘤的发生。
NRAS基因在甲状腺乳头状癌中的突变率约为6.7%~48%,不同报道间的差异可能是由于各个研究入选的病例的病理亚型比例不一致。在滤泡亚型和非滤泡亚型的甲状腺乳头状癌的NRAS突变率有较大差异:滤泡亚型的甲状腺乳头状癌的NRAS基因突变率约43%,而在非滤泡亚型的甲状腺乳头状癌肿少见NRAS基因突变;在一个小样本量的研究中,有包膜包裹的滤泡型乳头状癌NRAS突变率为36%,而浸润性的滤泡型乳头状癌中RAS突变率仅为10%。另有一项早期研究表明,NRAS突变与甲状腺乳头状癌的复发及归因死亡率相关。

5. PAX8/PPARγ重排

PAX8(paired box gene 8)属于一个转录因子家族,该基因表达一种核蛋白,调节甲状腺滤泡细胞的生长、终末分化及甲状腺特异基因的表达。PPARγ(peroxisome proliferation activated receptor γ)的产物为类固醇及甲状腺激素的核受体,与胰岛素敏感性、抗增殖、抗纤维化以及抗炎症反应相关。发生PAX8/PPARγ重排后,会表达一种PAX8/PPARγ融合蛋白。目前认为该蛋白可阻断正常的PPARγ及相关基因的效应,而在体外实验中,PAX8/PPARγ融合蛋白有使正常大鼠甲状腺细胞系恶性转化的潜能。
在甲状腺乳头状癌中,PAX8/PPARγ重排仅见于滤泡亚型,阳性率约为37%,且与多灶性及血管侵袭性相关。

6. PTEN/PI3K/Akt/mTOR信号通路

Akt,又称为蛋白激酶B(protein kinase B),是一种特异性的色氨酸/苏氨酸激酶,在PI3K/Akt/Mtor信号通路中起着中心作用。其上游元件PI3K(phosphoinositide-3 kinase,磷脂酰肌醇-3激酶)介导PIP2[phosphatidylinositol(3,4) -biphosphate,磷脂酰肌醇二磷酸]向PIP3[phosphatidylinositol(3,4,5) -triphosphate,磷脂酰肌醇三磷酸]的转化,而抑癌基因PTEN (phosphatase and tensin homolog deleted in chromosome ten,10号染色体缺失的磷酸酯酶及张力蛋白同源序列)表达产物则逆转这一过程的进展。Akt被PIP3磷酸化后向下通过一系列复杂过程,最终活化mTOR(mammalian target of rapamycin,哺乳动物拉帕霉素受体),介导细胞存活、推动细胞周期进展以及促血管生成。
PIK3CA(phosphoinositide-3 kinase,catalytic,alpha polypeptide)基因编码PI3K的p110α催化亚单位,其突变热点位于第9及20号外显子。在甲状腺乳头状癌中,PIK3CA的点突变非常少见,约1%~1.9%,但该基因的拷贝数增多则较常见,约为14%~53.1%。目前PIK3CA基因状态与甲状腺乳头状癌的临床病理联系尚未明晰。

7. IDH-1基因突变

IDH-1(isocitrate dehydrogenase 1,异柠檬酸脱氢酶)基因编码三羧酸循环的关键酶。在正常情况下,IDH-1能将异柠檬酸转化为α-酮戊二酸;若IDH-1基因突变导致其活性功能域的精氨酸残基被组氨酸取代,变异的IDH-1会将异柠檬酸转化为R-2-羟基戊二酸(2HG),而过量的2HG累积被认为会增加罹患脑胶质瘤的风险。这一致癌机制随后在急性非淋巴细胞性白血病中也被发现,在甲状腺乳头状癌中,IDH-1突变与组织学亚型相关,经典型乳头状癌突变率约10%,滤泡型乳头状癌约20%,但是该基因改变在甲状腺癌中的作用机制尚未阐明。

8. TERT启动子突变

TERT(telomerase reverse transcriptase,端粒酶逆转录酶)参与端粒酶逆转录活性功能区构成,该酶在细胞的端粒维护机制中起着重要的作用。TERT启动子突变可使胞内端粒酶增多,端粒不缩短,从而令细胞永生化。
在甲状腺乳头状癌中,TERT启动子突变率为11.8%~22.5%,主要为第228位点或第250位点的C到T突变。在高细胞亚型中TERT启动子突变率可达30.8%。

二、 甲状腺滤泡癌的分子改变

甲状腺滤泡癌与甲状腺乳头状癌都起源于甲状腺的滤泡细胞,若按照WHO分类,嗜酸细胞性甲状腺癌也属此类。尽管甲状腺癌的总体发病率在升高,甲状腺滤泡癌的发病率有下降的趋势。甲状腺滤泡癌的预后较乳头状癌略差,且易于血行转移至骨及肺部,但治疗方式仍以手术及放射性碘治疗为主。
甲状腺乳头状癌的涉及的分子改变有MAPK信号通路,PAX/PPARγ核受体以及PIK3CA通路。
甲状腺滤泡癌中RAS基因突变概率远高于甲状腺乳头状癌。在不同的研究中甲状腺滤泡癌RAS基因突变阳性率在30~56%,且NRAS基因的第61密码子突变与不良的预后相关。甲状腺滤泡癌发生PAX/PPARγ重排的概率与滤泡型甲状腺乳头状癌类似,约36%~56% 且与甲状腺滤泡癌多灶性、更高的侵袭性、更低的发病年龄、诊断时更小的病灶相关。PIK3CA点突变或拷贝数增多的情况较甲状腺乳头状癌多见,突变率约13%,拷贝数增多发生率24%~29%;PTEN突变率约4.69%。
另外IDH-1突变与TERT启动子突变在甲状腺滤泡癌中也有报道,发生率分别为5%~25%与11.4%。

三、 低分化甲状腺癌与甲状腺未分化癌的分子改变

甲状腺低分化癌及未分化癌除了BRAF、NRAS、PIK3CA、PTEN等见于分化良好的甲状腺癌的突变外,一部分还会出现抑癌基因CTNNB1及TP53的突变。CTNNB1基因表达β-黏附素(β-catenin),是APC/CTNNB1信号通路的一个重要元件。CTNNB1突变可导致β-黏附素表达下降或者异常表达,也有研究表明CTNNB1的突变与肿瘤恶性程度相关。CTNNB1的突变率与分化程度有关,在低分化和未分化甲状腺癌中分别为10%~25%和60%~65%,而与此类似,TP53在低分化的甲状腺癌中突变率为20%~30%,而在甲状腺未分化癌中高达70%~80%。IDH-1突变与TERT突变也可见于甲状腺低分化癌及未分化癌。IDH-1在未分化甲状腺癌中的发生率约10%~30% [32,44],TERT启动子突变在低分化甲状腺癌中的发生率为37.5%,在未分化甲状腺癌中发生率为42.6%。

总结

甲状腺癌的分子机制至今仍未完全明晰,但是可以看到,非滤泡亚型的甲状腺乳头癌的分子改变主要集中在MAPK信号通路,而滤泡亚型的甲状腺乳头状癌、甲状腺滤泡癌的分子改变则主要集中在PI3K/Akt/mTOR通路以及PPARγ核受体中。因此,甲状腺滤泡细胞MAPK信号通路上内的分子发生突变会向甲状腺乳头状癌转化,而若是出现PTEN、RAS等PIK3CA信号通路或者PAX8/PPARγ基因的异常则向滤泡癌转化。若在此基础上接受更多的打击,发生抑癌基因GTTNB1以及TP53的缺陷,则会进一步转化为低分化或者未分化癌甲状腺癌。而IDH-1及TERT启动子基因在甲状腺癌的作用则有待进一步的研究。

参考文献

1. Kimura ET.,Nikiforova MN,Zhu Z,et al. High prevalence of BRAF mutations in thyroid cancer:genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res,2003,63 (7):1454-1457.
2. Faustino A.,Couto JP,Populo H,et al. mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma. The Journal of Clinical Endocrinology & Metabolism,2012,97 (7): E1139-E1149.
3. Bommarito A.,Richiusa P,Carissimi E,et al.,BRAFV600E mutation,TIMP-1 upregulation,and NF-κB activation:closing the loop on the papillary thyroid cancer trilogy. Endocrinerelated cancer,2011,18(6):669-685.
4. Durante C.,Puxeddu E,Ferretti E,et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab,2007. 92(7):2840-2843.
5. Zhang Z.,Liu D,Murugan AK,et al. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocrine-related cancer,2014,21(2):161-173.
6. Brent GA,Kogai T. Cancer:Novel target to enhance radioiodine uptake in thyroid cancer. Nature Reviews Endocrinology,2013,9(9):508-509.
7. Elisei R. Molecular Profiles of Papillary Thyroid Tumors Have Been Changing in the Last Decades:How Could We Explain It? The Journal of Clinical Endocrinology & Metabolism,2014,99(2):412-414.
8. Jung CK,Little MP,Lubin JH,et al. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. The Journal of Clinical Endocrinology &Metabolism,2013.
9. Xing M,Alzahrani AS,Carson KA,et al. Association between braf V600E mutation and mortality in patients with papillary thyroid cancer. JAMA,2013,309(14):1493-1501.
10. Gouveia C.,Can NT,Bostrom A,et al. Lack of Association of BRAF Mutation With Negative Prognostic Indicators in Papillary Thyroid Carcinoma:The University of California, San Francisco,Experience. JAMA Otolaryngol Head Neck Surg,2013.
11. Howell GM.,Nikiforova MN,Carty SE,et al. BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Annals of surgical oncology,2013,20(1):47-52.
12. Lupi C.,Giannini R,Ugolini C,et al. Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. Journal of Clinical Endocrinology & Metabolism,2007,92(11):4085-4090.
13. Rivera M.,Ricarte-Filho J,Knauf J,et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes(encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Modern pathology,2010,23(9):1191-1200.
14. Elisei R.,Cosci B,Romei C,et al.,Ret Oncogene and Thyroid Carcinoma. J Genet Syndr Gene Ther,2014,5(214):2.
15. Zhu Z.,Ciampi R,Nikiforova MN,et al. Prevalence of RET/ PTC Rearrangements in Thyroid Papillary Carcinomas:Effects of the Detection Methods and Genetic Heterogeneity. The Journal of Clinical Endocrinology & Metabolism,2006,91(9):3603-3610.
16. Fenton,C.L.,Lukes Y,Nicholson D,et al. The ret/PTC Mutations Are Common in Sporadic Papillary Thyroid Carcinoma of Children and Young Adults. The Journal of Clinical Endocrinology & Metabolism,2000,85(3):1170-1175.
17. Nikiforov Y.RET/PTC rearrangement in thyroid tumors. Endocrine Pathology,2002,13(1):3-16.
18. Sugg S.L.,Zheng L,Rosen IB,et al. ret/PTC-1,-2,and-3 oncogene rearrangements in human thyroid carcinomas:implications for metastatic potential? The Journal of clinical endocrinology and metabolism,1996,81(9):3360-3365.
19. Musholt T.J.,Musholt PB,Khaladj N,et al. Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery,2000,128(6):984-993.
20. Bongarzone I.,Vigneri P,Mariani L,et al. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family:correlation with clinicopathological features. Clin Cancer Res,1998,4(1):223-228.
21. Nikiforova M.N.,Lynch RA,Biddinger PW,et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors:evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab,2003,88(5):2318-2326.
22. Hara H.,Fulton N,Yashiro T,et al. N-ras mutation:an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery,1994,116(6):1010-1016.
23. Zhu Z.,Gandhi M,Nikiforova MN,et al. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma An unusually high prevalence of ras mutations. American Journal of Clinical Pathology,2003,120(1):p. 71-77.
24. Eberhardt NL.,Grebe SK,McIver B,et al. The role of the PAX8/PPARγ fusion oncogene in the pathogenesis of follicular thyroid cancer. Molecular and cellular endocrinology,2010,321(1):50-56.
25. Kroll TG.,Sarraf P,Pecciarini L,et al. PAX8-PPARγ1 fusion in oncogene human thyroid carcinoma. Science,2000,289 (5483):1357-1360.
26. Vu-Phan D,Grachtchouk V,Yu J,et al. The thyroid cancer PAX8-PPARG fusion protein activates Wnt/TCF-responsive cells that have a transformed phenotype. Endocr Relat Cancer,2013,20(5):725-739.
27. Castro P.,Rebocho AP,Soares RJ,et al. PAX8-PPARγ Rearrangement Is Frequently Detected in the Follicular Variant of Papillary Thyroid Carcinoma. The Journal of Clinical Endocrinology & Metabolism,2006,91(1):213-220.
28. Wang Y.,Hou P,Yu H,et al.,High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors. Journal of Clinical Endocrinology & Metabolism,2007,92(6): 2387-2390.
29. Abubaker J.,Jehan Z,Bavi P,et al. Clinicopathological Analysis of Papillary Thyroid Cancer with PIK3CA Alterations in a Middle Eastern Population. The Journal of Clinical Endocrinology & Metabolism,2008,93(2):611-618.
30. Dang L.,White DW,Gross S,et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature,2009,462 (7274):739-744.
31. Krell D.,Mulholland P,Frampton AE,et al.,IDH mutations in tumorigenesis and their potential role as novel therapeutic targets. Future Oncology,2013,9(12):1923-1935.
32. Hemerly JP,Bastos AU,Cerutti JM. Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Eur J Endocrinol,2010,163(5):747-755.
33. Liu X,Bishop J,Shan Y,et al.,Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocrinerelated cancer,2013,20(4):603-610.
34. Landa I,Ganly I,Chan TA,et al.,Frequent somatic TERT promoter mutations in thyroid cancer:higher prevalence in advanced forms of the disease. The Journal of Clinical Endocrinology & Metabolism,2013,98(9):E1562-E1566.
35. Sugino K.,Kameyama K,Ito K,et al.,Does Hürthle Cell Carcinoma of the Thyroid Have a Poorer Prognosis than Ordinary Follicular Thyroid Carcinoma?Annals of Surgical Oncology,2013,20(9):2944-2950.
36. Sobrinho-Simoes M,Eloy C,Magalhães J,et al.,Follicular thyroid carcinoma. Mod Pathol,2011,24(S2):S10-S18.
37. Nikiforova MN,Wald AI,Roy S,et al.,Targeted Next-Generation Sequencing Panel(ThyroSeq)for Detection of Mutations in Thyroid Cancer. The Journal of Clinical Endocrinology & Metabolism,2013,98(11):E1852-E1860.
38. Fukahori M,Yoshida A,Hayashi H,et al. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors:new insights from a single center and a large patient cohort. Thyroid,2012,22(7):683-689.
39. Cheung,L.,et al.,Detection of the PAX8-PPARγ fusion oncogene in both follicular thyroid carcinomas and adenomas. Journal of Clinical Endocrinology & Metabolism,2003,88(1):354-357.
40. Ferraz C. Rehfeld C,Krogdahl A,et al. Detection of PAX8/ PPARG and RET/PTC rearrangements is feasible in routine air-dried fine needle aspiration smears. Thyroid,2012,22(10):1025-1030.
41. Marques AR.,Espadinha C,Catarino AL,et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab,2002,87(8):3947-3952.
42. Wu G.,Mambo E,Guo Z,et al. Uncommon mutation,but common amplifications,of the PIK3CA gene in thyroid tumors. Journal of Clinical Endocrinology & Metabolism,2005,90(8):4688-4693.
43. Liu Z,Hou P,Ji M,et al. Highly Prevalent Genetic Alterations in Receptor Tyrosine Kinases and Phosphatidylinositol 3-Kinase/AKt and Mitogen-Activated Protein Kinase Pathways in Anaplastic and Follicular Thyroid Cancers. The Journal of Clinical Endocrinology & Metabolism,2008,93(8):3106-3116.
44. Murugan AK,Bojdani E,Xing M.Identification and functional characterization of isocitrate dehydrogenase 1(IDH1)mutations in thyroid cancer. Biochemical and Biophysical Research Communications,2010,393(3):555-559.
45. Garcia-Rostan G,Camp RL,Herrero A,et al. β-catenin dysregulation in thyroid neoplasms:down-regulation,aberrant nuclear expression,and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. The American journal of pathology,2001,158(3):987-996.
46. Fagin JA.,Matsuo K,Karmakar A,et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. Journal of Clinical Investigation,1993,91 (1):179.