TensorFlow Machine Learning Cookbook
上QQ阅读APP看书,第一时间看更新

Operations in a Computational Graph

Now that we can put objects into our computational graph, we will introduce operations that act on such objects.

Getting ready

To start a graph, we load TensorFlow and create a session, as follows:

import tensorflow as tf
sess = tf.Session()

How to do it…

In this example, we will combine what we have learned and feed in each number in a list to an operation in a graph and print the output:

  1. First we declare our tensors and placeholders. Here we will create a numpy array to feed into our operation:
    import numpy as np
    x_vals = np.array([1., 3., 5., 7., 9.])
    x_data = tf.placeholder(tf.float32)
    m_const = tf.constant(3.)
    my_product = tf.mul(x_data, m_const)
    for x_val in x_vals:
        print(sess.run(my_product, feed_dict={x_data: x_val}))
    3.0
    9.0
    15.0
    21.0
    27.0

How it works…

Steps 1 and 2 create the data and operations on the computational graph. Then, in step 3, we feed the data through the graph and print the output. Here is what the computational graph looks like:

How it works…

Figure 1: Here we can see in the graph that the placeholder, x_data, along with our multiplicative constant, feeds into the multiplication operation.