18.交换。特性的定位
根据前面的描述,我们已经默认或者明确表明了,一个特定的染色体作为整体,要么来自祖父,要么来自祖母。换句话说,单个染色体是整个传递下去的。然而,后代中却有更多机会出现祖父母遗传性的混合。事实上,染色体并不是或并不总是整个传递下去的。在减数分裂(比如在父体内的一次减数分裂)中,任何两条“同源”染色体在分离以前彼此紧靠在一起,在此期间,它们有时按照图6所示的方式整段交换。通过这种被称为“交换”的过程,分别位于那个染色体不同部位上的两种特性将在孙儿女那一代分离,孙儿女将会一种特性像祖父,另一种特性像祖母。这种既不罕见也不频繁的交换活动已为我们提供了关于特性在染色体上定位的宝贵信息。若要作完整说明,我们就不得不利用直到下一章才引入的概念(如杂合性、显性等);不过那将超出这本小书的范围,所以我只谈一下要点。27
图6 交换。左:接触中的两个同源染色体。
右:交换和分离以后。
假如没有交换,由同一条染色体负责的两种特性将永远被一起遗传给下一代,任何后代都不可能接受其中一种特性而不同时接受另一种特性;但是由不同染色体负责的两种特性,将要么以50∶50的机会被分开,要么总是被分开。如果两种特性位于同一祖先的同源染色体上,那就是后一种情况,因为这两条染色体永远不会一起传给下一代。
交换扰乱了这些规则和机会。因此,在为此精心设计的广泛的繁育试验中,只要认真记录后代特性的百分组成,就可以确定交换的概率。作统计分析时,人们接受了所建议的工作假说,即位于同一条染色体上的两种特性之间的“连锁”被交换打断的次数越少,它们彼此靠得就越近。因为这样一来,在它们之间形成交换点的机会就少了,而位于染色体另一端的特性则会被每一次交换所分离(这也适用于位于同一祖先同源染色体上的特性的重新组合)。凭借这种方法,可以期望根据“对连锁的统计”画出每一条染色体内部的“特性图”。28
这些预期已经完全得到证实。在经过充分试验的一些事例中(主要是但不仅仅是果蝇),被测试的特性实际上按照不同的染色体(果蝇有4条染色体)分成了不同的组,组与组之间没有连锁。每个组内可以画出特性的直线图,此图定量说明了该组任意两个特性之间的连锁程度,所以这些特性无疑是定位的,而且是沿一条直线定位的,就像染色体的棒状所暗示的那样。
当然,这里描绘的遗传机制的图式仍然相当空洞和平淡,甚至有些天真。因为我们并没有讲,我们所说的特性到底指什么。把本质上是统一“整体”的有机体模式分割成互不相关的“特性”,这似乎既不恰当,也不可能。对于任何具体事例,我们实际说的是,如果一对祖先在某个明确的方面存在着差别(比如一个是蓝眼,另一个是褐眼),那么在这方面,他们的后代不是继承这一个就是继承另一个。我们在染色体上定位的就是这种差别的位置(专业术语称之为“位点”,如果考虑到其背后假设性的物质结构,可称之为“基因”)。我认为,真正的基本概念是特性的差别,而不是特性本身,尽管这种说法在语言和逻辑上有明显的矛盾。特性的差别实际上是不连续的,我们下一章谈突变时会看到这一点。我希望,迄今所呈现的平淡枯燥的图式那时会显得更为生动和富有色彩。29