
3.6 均值的置信区间及其Excel程序
3.6.1 计算均值的置信区间的方法
用相同的方法重复测定某一量,在消除系统误差的情况下,测定值的算术平均值(子样平均值),可作为这个量的真值μ(即总体均值,以下简称真值或均值)的估计值。测定次数越多,子样容量n越大,平均值与真值就越接近。当测定次数为无穷时,平均值就是这个量的真值。当然,实际上测定无穷多次是做不到的。我们可以根据有限次测定数据的平均值
去估计真值μ,这就是本章3.3节提到的均值点估计问题。如果测定数据服从或接近服从正态分布,可以证明这种估计是相当好的。但毕竟是
。那么子样平均值与总体均值到底相差多少呢? 这就需要估计其误差。令均值μ的估计量
的误差的绝对值为

由于估计量是由于样值计算出的统计量,故
也是一随机变量。同例2-2类似,可以找到一种方法,求估计误差位于某一区间的概率;或者反过来,可以给定这个概率,求出估计的误差范围。这后一个问题,正是本节所要讨论的,只是问题的提法不同。这里给出一个置信概率(或称置信度),求总体均值在这个置信概率下的所在范围(区间),这个范围称为置信区间。
可以用下式表示μ的估计量,即

或等价地写成

再进一步写成

对于式(3-25)可以叙述为“估计量的误差落在区间(-ε,ε)中的概率为(1-α)”。而对式(3-26)则叙述为“在置信概率为(1-α)时的均值μ的置信区间是”。也就是说,有100(1-α)%的把握,均值μ在这个区间内。但不能说成“均值落在这个区间的概率为100(1-α)%”。这是因为对一个特定的总体来说,其均值μ是一个常数,只是在一般情况下,不能确切地知道而已;也就是说,μ不是一随机变量,要么这个区间包含μ(此时μ出现的概率是100%),要么这个区间不包含μ(概率为0)。
置信区间表示估计结果的精确程度,置信概率则表示估计结果的可靠程度。
为了确定均值μ在某一置信概率下的置信区间,需要计算式(3-26)中的ε。这里需引入一个新的变量。

可以证明,随机变量t有如下的概率密度函数

这个分布叫作具有自由度为f=n-1的t分布。显然,t分布关于t=0是对称的,t分布的概率密度取决于子样的容量n和t的值。
利用t分布可以导出

即

式中

所以

结合算术平均值的标准差的计算式(3-14),上式可写成

将式(3-31a)代入式(3-26)得

对应置信概率(1-α)的均值μ的置信区间是

科学工作者常把置信区间表示为

于是,对于式(3-33),可以通俗地说成“用子样平均值去估计真值μ,有100(1-α)%的把握,其误差为(
)”。
利用附录B-2,可以查到对应已给的置信概率(1-α)、自由度f=n-1的ta,f的值,从而求得均值μ的置信区间。
具体做法如下:
①问题给出:原始数据、子样容量n、置信概率(1-α)。
②由α、f(=n-1)查附录B-2,得ta,f。
③由原始数据计算平均值和标准差S。
④计算ε。
⑤写出置信区间(),或者写成
,并标明置信概率。
【例3-4】 在指定条件下,对某物理量测定得如下数据:11、12、12、8、8、13、13、14、14、15,试分别求出置信概率为0.90和0.99时均值的置信区间。
解: 已知n=10,1-α1=0.90,1-α2=0.99,则
f=n-1=10-1=9 α1=1-0.90=0.10 α2=1-0.99=0.01
查附录B-2得
t0.10,9=1.83t0.01,9=3.25
由原始数据,得

由计算结果可知,当置信概率分别为90%和99%时,该物理量的置信区间分别为

从例3-4的结果可以看出,对应同一测定结果,置信区间随置信概率的不同而不同,提高置信概率,置信区间增大。
科学工作者在报告研究成果时,通常取置信概率为95%,也有取90%和99%的。
【例3-5】 为检验某一河流中鱼被汞污染的情况,从一批鱼中随机抽取一些鱼样,测定鱼组织中的汞含量,得到测定结果如下(ppm):2.06、1.93、2.12、2.16、1.89、1.95,试从测定数据估计这批鱼汞含量的范围。
解: 取置信概率为0.95,即
1-α=0.95,α=0.05
f=n-1=6-1=5
查附录B-2得
t0.05,5=2.57
由原始数据

所以,这批鱼的汞含量范围为

由计算结果,可以说根据这次试验,有95%的把握,这批鱼的汞含量在1.90~2.14ppm之内。