参考文献
[1] Pliskin I, Tokita N. Bound rubber in elastomers: analysis of elastomer-filler interaction and its effect on viscosity and modulus of composite systems[J]. J Appl Polym Sci, 1972, 16(2): 473-492.
[2] Wolff S, Wang MJ, Tan EH. Filler-elastomer interactions. Part Ⅶ. Study on bound rubber[J]. Rubber Chem Technol, 1993, 66(2): 163-177.
[3] Choi SS, Ko E. Novel test method to estimate bound rubber formation of silica-filled solution styrene-butadiene rubber compounds[J]. Polym Test, 2014, 40: 170-177.
[4] Hoshikawa Y, An B, Kashihara S, et al. Analysis of the interaction between rubber polymer and carbon black surfaces by efficient removal of physisorbed polymer from carbon-rubber composites[J]. Carbon, 2016, 99: 148-156.
[5] Liu J, Wan H, Zhou H, et al. Formation mechanism of bound rubber in elastomer nanocomposites: a molecular dynamics simulation study[J]. RSC Advances, 2018, 8(23): 13008-13017.
[6] Tao YC, Dong B, Zhang LQ, et al. Reactions of silica-silane rubber and properties of silane-silica/solution-polymerized styrene-butadiene rubber composite[J]. Rubber Chem Technol, 2016, 89(3): 526-539.
[7] Ma JH, Zhang LQ, Wu YP. Characterization of filler-rubber interaction, filler network structure, and their effects on viscoelasticity for styrene-butadiene rubber filled with different fillers[J]. Journal of Macromolecular Science, Part B, 2013, 52(8): 1128-1141.
[8] Zhang C, Tang Z, Guo B, et al. Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica[J]. Compos Sci Technol, 2018, 156: 70-77.
[9] Lu Y, Li J, Yu H, et al. Plasma induced surface coating on carbon nanotube bundles to fabricate natural rubber nanocomposites[J]. Polym Test, 2018, 65: 21-28.
[10] Huang M, Lu J, Han B, et al. Covalent grafting approach for improving the dispersion of carbon black in styrene-butadiene rubber composites by copolymerizing p-(2, 2′-diphenylethyl) styrene with a thermally decomposed triphenylethane pendant[J]. Industrial & Engineering Chemistry Research, 2016, 55(35): 9459-9467.
[11] Tang Z, Huang J, Wu X, et al. Interface engineering toward promoting silanization by ionic liquid for high-performance rubber/silica composites[J]. Industrial & Engineering Chemistry Research, 2015, 54(43): 10747-10756.
[12] Stoeckelhuber K W, Svistkov A S, Pelevin A G, et al. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites[J]. Macromolecules, 2011, 44(11): 4366-4381.
[13] Natarajan B, Li Y, Deng H, et al. Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites[J]. Macromolecules, 2013, 46(7): 2833-2841.
[14] Fowkes F M. Additivity of intermolecular forces at interfaces. Ⅰ. Determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids1[J]. The Journal of Physical Chemistry, 1963, 67(12): 2538-2541.
[15] Breneman C M, Brinson L C, Schadler L S, et al. Stalking the materials genome: a data-driven approach to the virtual design of nanostructured polymers[J]. Adv Funct Mater, 2013, 23(46): 5746-5752.
[16] Stoeckelhuber K W, Das A, Jurk R, et al. Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber[J]. Polymer, 2010, 51(9): 1954-1963.
[17] Wolff S, Wang M J. Filler-elastomer interactions. Part Ⅳ. The effect of the surface energies of fillers on elastomer reinforcement[J]. Rubber Chemistry and Technology, 1992, 65(2): 329-342.
[18] Tang Z, Zhang L, Feng W, et al. Rational design of graphene surface chemistry for high-performance rubber/graphene composites[J]. Macromolecules, 2014, 47(24): 8663-8673.
[19] Wang D, Fujinami S, Nakajima K, et al. True surface topography and nanomechanical mapping measurements on block copolymers with atomic force microscopy[J]. Macromolecules, 2010, 43(7): 3169-3172.
[20] Wang D, Fujinami S, Nakajima K, et al. Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement[J]. Polymer, 2010, 51(12): 2455-2459.
[21] Wang D, Fujinami S, Nakajima K, et al. Production of a cellular structure in carbon nanotube/natural rubber composites revealed by nanomechanical mapping[J]. Carbon, 2010, 48(13): 3708-3714.
[22] Nishi T, Nukaga H, Fujinami S, et al. Nanomechanical mapping of carbon black reinforced natural rubber by atomic force microscopy[J]. Chinese Journal of Polymer Science, 2007, 25(01): 35-41.
[23] Dohi H, Horiuchi S. Locating a silane coupling agent in silica-filled rubber composites by EFTEM[J]. Langmuir, 2007, 23(24): 12344-12349.
[24] Das A, Stöckelhuber K W, Jurk R, et al. Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes[J]. Carbon, 2009, 47(14): 3313-3321.
[25] Zhang X, Loo L S. Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites[J]. Macromolecules, 2009, 42(14): 5196-5207.
[26] Robertson C G, Roland C M. Glass transition and interfacial segmental dynamics in polymer-particle composites[J]. Rubber Chemistry and Technology, 2008, 81(3): 506-522.
[27] Valentín J L, Posadas P, Fernandez-Torres A, et al. Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems[J]. Macromolecules, 2010, 43(9): 4210-4222.
[28] Vanderschueren J, Gasiot J. Field-induced thermally stimulated currents[M]//Thermally stimulated relaxation in solids. Berlin: Springer, 1979: 135-223.
[29] Fragiadakis D, Pissis P, Bokobza L. Glass transition and molecular dynamics in poly (dimethylsiloxane)/silica nanocomposites[J]. Polymer, 2005, 46(16): 6001-6008.
[30] Kraus G. Swelling of filler-reinforced vulcanizates[J]. Journal of Applied Polymer Science, 1963, 7(3): 861-871.
[31] Kraus G. Interactions of elastomers and reinforcing fillers[J]. Rubber Chemistry and Technology, 1965, 38(5): 1070-1114.
[32] López-Manchado M A, Valentín J L, Herrero B, et al. Novel approach of evaluating polymer nanocomposite structure by measurements of the freezing-point depression[J]. Macromol Rapid Commun, 2004, 25(14): 1309-1313.
[33] Valentín J L, Mora-Barrantes I, Carretero-González J, et al. Novel experimental approach to evaluate filler-elastomer interactions[J]. Macromolecules, 2009, 43(1): 334-346.
[34] Honiball D, Huson M G, McGill W J. A nucleation theory for the anomalous freezing point depression of solvents in swollen rubber gels[J]. Journal of Polymer Science Part B: Polymer Physics, 1988, 26(12): 2413-2431.
[35] Smith W F. Principles of materials science and engineering[M]. New York:McGraw-Hill Inc, 1996.
[36] Sargsyan A, Tonoyan A, Davtyan S, et al. The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data[J]. European Polymer Journal, 2007, 43(8): 3113-3127.
[37] Lipatov Y S, Privalko V P. Glass transition in filled polymer systems[J]. Polymer Science USSR, 1972, 14(7): 1843-1848.
[38] Fragiadakis D, Bokobza L, Pissis P. Dynamics near the filler surface in natural rubber-silica nanocomposites[J]. Polymer, 2011, 52(14): 3175-3182.
[39] Ayala J A, Hess W M, Dotson A O, et al. New studies on the surface properties of carbon blacks[J]. Rubber Chemistry and Technology, 1990, 63(5): 747-778.
[40] Zhang H, Datta R N, Talma A G, et al. Modification of EPDM with alkylphenol polysulfide for use in tire sidewalls, 2-mechanistic and morphological characterizations[J]. Macromolecular Materials and Engineering, 2010, 295(1): 76-83.
[41] Flory P J, Rehner Jr J. Statistical mechanics of cross-linked polymer networks. Ⅰ. Rubberlike elasticity[J]. The Journal of Chemical Physics, 1943, 11(11): 512-520.
[42] Flory P J, Jr J R. Statistical mechanics of cross-linked polymer networks. Ⅱ. Swelling[J]. The Journal of Chemical Physics, 1943, 11(11): 521-526.
[43] Litvinov V M, Steeman P A M. EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR[J]. Macromolecules, 1999, 32(25): 8476-8490.
[44] Lei Y D, Tang Z H, Guo B C, et al. Synthesis of novel functional liquid and its application as a modifier in SBR/silica composites[J]. Express Polymer Letters, 2010, 4(11): 692-703.
[45] Lei Y, Tang Z, Zhu L, et al. Functional thiol ionic liquids as novel interfacial modifiers in SBR/HNTs composites[J]. Polymer, 2011, 52(5): 1337-1344.
[46] Lei Y, Tang Z, Zhu L, et al. Thiol-containing ionic liquid for the modification of styrene–butadiene rubber/silica composites[J]. Journal of Applied Polymer Science, 2012, 123(2): 1252-1260.
[47] Castillejos E, Debouttière P J, Roiban L, et al. An efficient strategy to drive nanoparticles into carbon nanotubes and the remarkable effect of confinement on their catalytic performance[J]. Angewandte Chemie, 2009, 121(14): 2567-2571.
[48] Das A, Boldt R, Jurk R, et al. Nano-scale morphological analysis of graphene-rubber composites using 3D transmission electron microscopy[J]. RSC Advances, 2014, 4(18): 9300-9307.
[49] Ikeda Y, Katoh A, Shimanuki J, et al. Nano-structural observation of in situ silica in natural rubber matrix by three dimensional transmission electron microscopy[J]. Macromol Rapid Commun, 2004, 25(12): 1186-1190.
[50] Kohjiya S, Kato A, Ikeda Y. Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix[J]. Prog Polym Sci, 2008, 33(10): 979-997.
[51] Jinnai H, Shinbori Y, Kitaoka T, et al. Three-dimensional structure of a nanocomposite material consisting of two kinds of nanofillers and rubbery matrix studied by transmission electron microtomography[J]. Macromolecules, 2007, 40(18): 6758-6764.
[52] Morozov I. Identification of primary and secondary filler structures in a polymer matrix by atomic force microscopy images analysis methods[J]. Polym Compos, 2013, 34(3): 433-442.
[53] Drummy L F, Wang Y, Schoenmakers R, et al. Morphology of layered silicate-(nanoclay-) polymer nanocomposites by electron tomography and small-angle X-ray scattering[J]. Macromolecules, 2008, 41(6): 2135-2143.
[54] Hooper J B, Schweizer K S. Contact aggregation, bridging, and steric stabilization in dense polymer- particle mixtures[J]. Macromolecules, 2005, 38(21): 8858-8869.
[55] Hooper J B, Schweizer K S. Theory of phase separation in polymer nanocomposites[J]. Macromolecules, 2006, 39(15): 5133-5142.
[56] Hooper J B, Schweizer K S. Real space structure and scattering patterns of model polymer nanocomposites[J]. Macromolecules, 2007, 40(19): 6998-7008.
[57] Liu J, Gao Y, Cao D, et al. Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation[J]. Langmuir, 2011, 27(12): 7926-7933.
[58] Liu J, Wang Z, Zhang Z, et al. Self-assembly of block copolymer chains to promote the dispersion of nanoparticles in polymer nanocomposites[J]. The Journal of Physical Chemistry B, 2017, 121(39): 9311-9318.
[59] Gao Y, Liu J, Shen J, et al. Molecular dynamics simulation of dispersion and aggregation kinetics of nanorods in polymer nanocomposites[J]. Polymer, 2014, 55(5): 1273-1281.
[60] Patra T K, Singh J K. Polymer directed aggregation and dispersion of anisotropic nanoparticles[J]. Soft Matter, 2014, 10(11): 1823-1830.
[61] Sankar U K, Tripathy M. Dispersion, depletion, and bridging of athermal and attractive nanorods in polymer melt[J]. Macromolecules, 2015, 48(2): 432-442.
[62] Liu J, Shen J, Gao Y, et al. Detailed simulation of the role of functionalized polymer chains on the structural, dynamic and mechanical properties of polymer nanocomposites[J]. Soft Matter, 2014, 10(44): 8971-8984.
[63] Wu Y P, Zhao Q S, Zhao S H, et al. The influence of in situ modification of silica on filler network and dynamic mechanical properties of silica-filled solution styrene–butadiene rubber[J]. J Appl Polym Sci, 2008, 108(1): 112-118.
A 在粗粒度分子动力学模拟中, σ为模型尺寸参数, τ为模拟的时间单位,相关物理量均经过无量纲化处理。