知识图谱:方法、实践与应用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.7 本章小结

知识图谱本身可以看作是一种新型的信息系统基础设施。从数据维度上看,知识图谱要求用更加规范的语义提升企业数据的质量,用链接数据的思想提升企业数据之间的关联度,终极目标是将非结构、无显示关联的粗糙数据逐步提炼为结构化、高度关联的高质量知识。每个企业都应该将知识图谱作为一种面向数据的信息系统基础设施进行持续性建设。

从技术维度上看,知识图谱的构建涉及知识表示、关系抽取、图数据存储、数据融合、推理补全等多方面的技术,而知识图谱的利用涉及语义搜索、知识问答、自动推理、知识驱动的语言及视觉理解、描述性数据分析等多个方面。要构建并利用好知识图谱,也要求系统性地综合利用来自知识表示、自然语言处理、机器学习、图数据库、多媒体处理等多个相关领域的技术,而非单个领域的单一技术。因此,知识图谱的构建和利用都应注重系统思维是未来的一种发展趋势。

互联网促成了大数据的集聚,大数据进而促进了人工智能算法的进步。新数据和新算法为规模化知识图谱构建提供了新的技术基础和发展条件,使得知识图谱构建的来源、方法和技术手段都发生了极大的变化。知识图谱作为知识的一种形式,已经在语义搜索、智能问答、数据分析、自然语言理解、视觉理解、物联网设备互联等多个方面发挥出越来越大的价值。AI浪潮愈演愈烈,而作为底层支撑的知识图谱赛道也从鲜有问津到缓慢升温,虽然还谈不上拥挤,但作为通往未来的必经之路,注定会走上风口。