非编码微小分子RNA与心脏疾病
上QQ阅读APP看书,第一时间看更新

参考文献

[1]Lee Y,Kim M,Han J,et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J,2004,23(20):4051-4060.
[2]Borchert GM,W Lanier,BL Davidson. RNA polymerase Ⅲ transcribes human microRNAs. Nat Struct Mol Biol,2006,13(12):1097-1101.
[3]Bortolin-Cavaille ML,Dance M,Weber M,et al. C19MC microRNAs are processed from introns of large Pol-Ⅱ,non-protein-coding transcripts. Nucleic Acids Res,2009,37(10):3464-3473.
[4]O′Donnell KA,Wentzel EA,Zeller KI,et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature,2005,435(7043):839-843.
[5]Ai J,Sun LH,Che H,et al. MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J Neurosci,2013,33(9):3989-4001.
[6]Ghose J,NP Bhattacharyya. Transcriptional regulation of microRNA-100,-146a,and-150 genes by p53 and NFkappaB p65/RelA in mouse striatal STHdh(Q7)/Hdh(Q7)cells and human cervical carcinoma HeLa cells. RNA Biol,2015,12(4):457-477.
[7]Yeom KH,Lee Y,Han J,et al. Characterization of DGCR8/Pasha,the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res,2006,34(16):4622-4629.
[8]Winter J,Jung S,Keller S,et al. Many roads to maturity:microRNA biogenesis pathways and their regulation. Nat Cell Biol,2009,11(3):228-234.
[9]Han J,Lee Y,Yeom KH,et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell,2006,125(5):887-901.
[10]Zeng Y,BR Cullen. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem,2005,280(30):27595-27603.
[11]Han J,Pedersen JS,Kwon SC,et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell,2009,136(1):75-84.
[12]Duan R,C Pak,P Jin. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet,2007,16(9):1124-1131.
[13]Diederichs S,DA Haber. Sequence variations of microRNAs in human cancer:alterations in predicted secondary structure do not affect processing. Cancer Res,2006,66(12):6097-6104.
[14]Guil S,J F Caceres. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol,2007,14(7):591-596.
[15]Davis BN,Hilyard AC,Lagna G,et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature,2008,454(7200):56-61.
[16]Zeng Y,BR Cullen. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res,2004,32(16):4776-4785.
[17]Bohnsack MT,K Czaplinski,D Gorlich. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA,2004,10(2):185-191.
[18]Kim VN. MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol,2005,6(5):376-385.
[19]Haase AD,Jaskiewicz L,Zhang H,et al. TRBP,a regulator of cellular PKR and HIV-1 virus expression,interacts with Dicer and functions in RNA silencing. EMBO Rep,2005,6(10):961-967.
[20]Wang K,Zhang S,Weber J,et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res,2010,38(20):7248-7259.
[21]Xu L,BF Yang,J Ai. MicroRNA transport:a new way in cell communication. J Cell Physiol,2013,228(8):1713-1719.
[22]Luciano DJ,Mirsky H,Vendetti NJ,et al. RNA editing of a miRNA precursor. RNA,2004,10(8):1174-1177.
[23]Blow MJ,Grocock RJ,van Dongen S,et al. RNA editing of human microRNAs. Genome Biol,2006,7(4):R27.
[24]Yang W,Chendrimada TP,Wang Q,et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol,2006,13(1):13-21.
[25]Guo H,Ingolia NT,Weissman JS,et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature,2010,466(7308):835-840.
[26]Eichhorn SW,Guo H,McGeary SE,et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell,2014,56(1):104-115.
[27]Vasudevan S,Y Tong,JA Steitz. Switching from repression to activation:microRNAs can up-regulate translation. Science,2007,318(5858):1931-1934.
[28]Place RF,Li LC,Pookot D,et al. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA,2008,105(5):1608-1613.
[29]Filipowicz W,SN Bhattacharyya,N Sonenberg. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight?Nat Rev Genet,2008,9(2):102-114.
[30]Gibbings D,O Voinnet. Control of RNA silencing and localization by endolysosomes. Trends Cell Biol,2010,20(8):491-501.
[31]Jonas S,E Izaurralde. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet,2015,16(7):421-433.
[32]Huntzinger E,E Izaurralde. Gene silencing by microRNAs:contributions of translational repression and mRNA decay. Nat Rev Genet,2011,12(2):99-110.
[33]Ricci EP,Limousin T,Soto-Rifo R,et al. miRNA repression of translation in vitro takes place during 43S ribosomal scanning. Nucleic Acids Res,2013.41(1):586-598.
[34]Quann K,Y Jing,I Rigoutsos. Post-transcriptional regulation of BRCA1 through its coding sequence by the miR-15/107 group of miRNAs. Front Genet,2015,6:242.
[35]Zhou H,I Rigoutsos. MiR-103a-3p targets the 5′UTR of GPRC5A in pancreatic cells. RNA,2014,20(9):1431-1439.
[36]Brummer A,J Hausser. MicroRNA binding sites in the coding region of mRNAs:extending the repertoire of post-transcriptional gene regulation. Bioessays,2014,36(6):617-626.
[37]Tay Y,Zhang J,Thomson AM,et al. MicroRNAs to Nanog,Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature,2008,455(7216):1124-1128.
[38]Orom UA,FC Nielsen,AH Lund. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell,2008,30(4):460-471.
[39]Lee I,Ajay SS,Yook JI,et al. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res,2009,19(7):1175-1183.
[40]Fang Z,N Rajewsky. The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS One,2011,6(3):e18067.
[41]Reczko M,Maragkakis M,Alexiou P,et al. Functional microRNA targets in protein coding sequences. Bioinformatics,2012,28(6):771-776.
[42]Hausser J,Syed AP,Bilen B,et al. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res,2013,23(4):604-615.
[43]Lai EC,C Wiel,GM Rubin. Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. RNA,2004,10(2):171-175.
[44]Guo L,Sun B,Wu Q,et al. miRNA-miRNA interaction implicates for potential mutual regulatory pattern. Gene,2012,511(2):187-194.
[45]Guo L,Zhao Y,Yang S,et al. Integrative analysis of miRNA-mRNA and miRNA-miRNA interactions. Biomed Res Int,2014,2014:907420.
[46]Tang R,Li L,Zhu D,et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus:evidence for a microRNA hierarchy system. Cell Res,2012,22(3):504-515.
[47]Hansen TB,Wiklund ED,Bramsen JB,et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J,2011,30(21):4414-4422.
[48]Yoon JH,Abdelmohsen K,Srikantan S,et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell,2012,47(4):648-655.
[49]Yoon JH,K Abdelmohsen,M Gorospe. Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol,2014,34:9-14.
[50]Yoon JH,Abdelmohsen K,Kim J,et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun,2013,4:2939.
[51]Fan M,Li X,Jiang W,et al. A long non-coding RNA,PTCSC3,as a tumor suppressor and a target of miRNAs in thyroid cancer cells. Exp Ther Med,2013,5(4):1143-1146.
[52]Judson RL,Greve TS,Parchem RJ,et al. MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nat Struct Mol Biol,2013,20(10):1227-1235.
[53]Gurtan AM,PA Sharp. The role of miRNAs in regulating gene expression networks. J Mol Biol,2013,425(19):3582-3600.
[54]Sun LH,Ban T,Liu CD,et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 downregulation. J Neuro chem. 2015,134(6):1139-1151.
[55]Liu CD,Wang Q,Zong DK,et al. Knockdown of microRNA-195 contributes to protein phosphatase-2A inactivation in rats with chronic brain hypoperfusion. Neurobiol Aging. 2016,45:76-87.
[56]Valadi H,Ekstrom K,Bossios A,et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol,2007,9(6):654-659.
[57]Mittelbrunn M,Gutierrez-Vazquez C,Villarroya-Beltri C,et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun,2011,2:282.
[58]Kosaka N,Iguchi H,Yoshioka Y,et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem,2010,285(23):17442-17452.
[59]Vickers KC,Palmisano BT,Shoucri BM,et al. MicroRNAs are transported in plasma and delivered to recipient cells by highdensity lipoproteins. Nat Cell Biol,2011,13(4):423-433.
[60]Kogure T,Lin WL,Yan IK,et al. Intercellular nanovesicle-mediated microRNA transfer:a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology,2011,54(4):1237-1248.
[61]Alvarez-Erviti L,Seow Y,Yin H,et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol,2011,29(4):341-345.
[62]Skog J,Wurdinger T,van Rijn S,et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol,2008,10(12):1470-1476.
[63]Yang T,Martin P,Fogarty B,et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res,2015,32(6):2003-2014.
[64]Andreu Z,M Yanez-Mo. Tetraspanins in extracellular vesicle formation and function. Front Immunol,2014,5:442.
[65]Mayer MP,B Bukau. Hsp70 chaperones:cellular functions and molecular mechanism. Cell Mol Life Sci,2005,62(6):670-684.
[66]Denzer K,van Eijk M,Kleijmeer MJ,et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol,2000,165(3):1259-1265.
[67]Borges FT,Melo SA,Ozdemir BC,et al. TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol,2013,24(3):385-392.
[68]OhshimaK,Inoue K,Fujiwara A,et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One,2010,5(10):e13247.
[69]Parolini I,Federici C,Raggi C,et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem,2009,284(49):34211-34222.
[70]van der Meel R,Fens MH,Vader P,et al. Extracellular vesicles as drug delivery systems:lessons from the liposome field. J Control Release,2014,195:72-85.
[71]Goldie BJ,Dun MD,Lin M,et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res,2014,42(14):9195-9208.
[72]Rotelli MT,Di Lena M,Cavallini A,et al. Fecal microRNA profile in patients with colorectal carcinoma before and after curative surgery. Int J Colorectal Dis,2015,30(7):891-898.
[73]Tanaka Y,Kamohara H,Kinoshita K,et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer,2013,119(6):1159-1167.
[74]Que R,Ding G,Chen J,et al. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol,2013,11:219.
[75]Ogata-Kawata H,Izumiya M,Kurioka D,et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One,2014,9(4):e92921.
[76]Wang J,Zhou Y,Lu J,et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol,2014,31(9):148.
[77]Samos J,Garcia-Olmo DC,Picazo MG,et al. Circulating nucleicacids in plasma/serum and tumor progression:are apoptotic bodies involved?An experimental study in a rat cancer model. Ann NY Acad Sci,2006,1075:165-173.
[78]Zernecke A,Bidzhekov K,Noels H,et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal,2009,2(100):ra81.
[79]Vickers KC,Palmisano BT,Shoucri BM,et al. MicroRNAs are transported in plasma and delivered to recipient cells by highdensity lipoproteins. Nat Cell Biol,2011,13(4):423-433.
[80]Tabet F,Cuesta Torres LF,Ong KL,et al. High-Density Lipoprotein-Associated miR-223 Is Altered after Diet-Induced Weight Loss in Overweight and Obese Males. PLoS One,2016,11(3):e0151061.
[81]Turchinovich A,Weiz L,Langheinz A,et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res,2011,39(16):7223-7233.
[82]Arroyo JD,Chevillet JR,Kroh EM,et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA,2011,108(12):5003-5008.
[83]Collino F,Deregibus MC,Bruno S,et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One,2010,5(7):e11803.
[84]Li L,Zhu D,Huang L,et al. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS One,2012,7(10):e46957.
[85]Turchinovich A,B Burwinkel. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol,2012,9(8):1066-1075.