非编码微小分子RNA与心脏疾病
上QQ阅读APP看书,第一时间看更新

参考文献

[1]Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science,2001,294(5543):797-799.
[2]Ambros V,Lee RC,Lavanway A,et al. MicroRNAs and other tiny endogenous RNAs in C. elegans. Current Biology,2003,13(10):807-818.
[3]Costa FF. Non-coding RNAs:lost in translation?Gene,2007,386(1-2):1-10.
[4]Ambros V. The functions of animal microRNAs. Nature,2004,431(7006):350-355.
[5]Bartel DP. MicroRNAs:genomics,biogenesis,mechanism,and function. Cell,2004,116(2):281-297.
[6]Londin E,Loher P,Telonis AG,et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primateand tissue-specific microRNAs. Proc Natl Acad Sci USA,2015,112(10):E1106-1115.
[7]Lewis BP,Shih IH,Jones-Rhoades MW,et al. Prediction of mammalian microRNA targets. Cell,2003,115(7):787-798.
[8]Lewis BP,Burge CB,Bartel DP. Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets. Cell,2005,120(1):15-20.
[9]Brennecke J,Stark A,Russell RB,et al. Principles of microRNA-target recognition. PLoS Biol,2005,3(3):e85.
[10]Guo H,Ingolia NT,Weissman JS,et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature,2010,466(7308):835-840.
[11]Ambros V,Horvitz HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science,1984,226(4673):409-416.
[12]Ambros V,Horvitz HR. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev,1987,1(4):398-414.
[13]Ferguson EL,Sternberg PW,Horvitz HR. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature,1987,326(6110):259-267.
[14]Ruvkun G,Ambros V,Coulson A,et al. Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics,1989,121(3):501-516.
[15]Ruvkun G Giusto J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature,1989,338(6213):313-319.
[16]Hildebrandt M Nellen W. Differential antisense transcription from the Dictyostelium EB4 gene locus:implications on antisensemediated regulation of mRNA stability. Cell,1992,69(1):197-204.
[17]Lee RC,Feinbaum RL,Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5):843-854.
[18]Wightman C,Ha Ⅰ,Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993,75(5):855-862.
[19]Reinhart BJ,Slack FJ,Basson M,et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403(6772):901-906.
[20]Pasquinelli AE,Reinhart BJ,Slack F,et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature,2000,408(6808):86-89.
[21]Lagos-Quintana M,Rauhut R,Lendeckel W,et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294(5543):853-858.
[22]Lau NC,Lim LP,Weinstein EG,et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science,2001,294(5543):858-862.
[23]Lee RC,Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science,2001,294(5543):862-864.
[24]Ambros V,Bartel B,Bartel DP,et al. A uniform system for micro-RNA annotation. RNA,2003,9(3):277-279.
[25]Griffiths-Jones S,Grocock RJ,van Dongen S,et al. miRBase:microRNA sequences,targets and gene nomenclature. Nucleic Acids Res,2006,34(Database issue):D140-144.
[26]Griffiths-Jones S. The microRNA registry. Nucleic Acids Res,2004,32(Database issue):D109-111.
[27]Griffiths-Jones S,Saini HK,van Dongen S,et al. miRBase:tools for microRNA genomics. Nucleic Acids Res,2008,36(Database issue):D154-158.
[28]Wurdinger T,Costa FF. Molecular therapy in the microRNA era. Pharmacogenomics J,2007,7(5):297-304.
[29]Wang Z,Yang B. MicroRNA expression detection methods. Berlin:Springer-Verlag,2010.
[30]Wang Z. MicroRNA-interference technologies. Berlin:Springer-Verlag,2009.
[31]Wang Z,Luo X. microRNA Interference:concepts and technologies//Gaur RK,Gafni Y,Sharma P,et al. RNAi Technologies. New Hampshire:Science Publishers,2010.
[32]Lee R,Feinbaum R,Ambros V. A short history of a short RNA. Cell. 2004,S116(2):S89-92.
[33]Kim VN. MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol,2005,6(5):376-385.
[34]Lee Y,Kim M,Han J,et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J,2004,23(20):4051-4060.
[35]Kim YK,Kim VN. Processing of intronic microRNAs. EMBO J,2007.26(3):775-783.
[36]Lee Y,Ahn C,Han J,et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature,2003,425(6956):415-419.
[37]Denli AM,Tops BB,Plasterk RH,et al. Processing of primary microRNAs by the Microprocessor complex. Nature,2004,432(7014):231-235.
[38]Gregory RI,Yan KP,Amuthan G,et al. The Microprocessor complex mediates the genesis of microRNAs. Nature,2004,432(7014):235-240.
[39]Landthaler M,Yalcin A,Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol,2004,14(23):2162-2167.
[40]Han J1,Lee Y,Yeom KH,et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes&Development,2004,18(24):3016-3027.
[41]Yi R,Qin Y,Macara IG,et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev,2003,17(24):3011-3016.
[42]Bernstein E,Caudy AA,Hammond SM,et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001,409(6818):363-366.
[43]Grishok A,Pasquinelli AE,Conte D,et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell,2001,106(1):23-34.
[44]Hutvágner G1,McLachlan J,Pasquinelli AE,et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science,2001,293(5531):834-838.
[45]Ketting RF,Fischer SE,Bernstein E,et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev,2001,15(20):2654-2659.
[46]Knight SW,Bass BL. A role for the RNaseⅢ enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science,2001,293(5538):2269-2271.
[47]Schwarz DS,Hutvágner G,Du T,et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell,2003,115(2):199-208.
[48]Khvorova A,Reynolds A,Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell,2003,115(2):209-216.
[49]Zamore PD,Tuschl T,Sharp PA,et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell,2000,101(1):25-33.
[50]Stark A,Brennecke J,Russell RB,et al. Identification of Drosophila microRNA targets. PLoS Biol,2003,1(3):E60.
[51]Enright AJ,John B,Gaul U,et al. MicroRNA targets in Drosophila. Genome Biol,2003,5(1):R1.
[52]Brennecke J,Stark A,Russell RB,et al. Principles of microRNA-target recognition. PLoS Biol,2005,3(3):e85.
[53]Fabian MR,Sonenberg N,Filipowicz W,et al. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem,2010,79(2010):351-379.
[54]Lytle JR,Yario TA,Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′UTR as in the 3′UTR. Proc Natl Acad Sci USA,2007,104(23):9667-9672.
[55]Calin,GA,Dumitru CD,Shimizu M,et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA,2002,99(24):15524-15529.
[56]Calin GA,Sevignani C,Dumitru CD,et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA,2004,101(9):2999-3004.
[57]Johnson SM,Grosshans H,Shingara J,et al. RAS is regulated by the let-7 microRNA family. Cell,2005,120(5):635-647.
[58]O’Donnell KA,Wentzel EA,Zeller KI,et al. C-Myc-regulated microRNAs modulate E2F1 expression. Nature,2005,435(7043):839-843.
[59]He L,Thomson JM,Hemann MT,et al. A microRNA polycistron as a potential human oncogene. Nature,2005,435(7043):828-833.
[60]Cimmino A,Calin GA,Fabbri M,et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA,2005,102(39):13944-13949.
[61]Garzon R,Calin GA,Croce CM,et al. MicroRNAs in cancer. Annu. Rev. Med,2009,60:167-179.
[62]Ma L,Teruya-Feldstein J,Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature,2007,449(7163):682-688.
[63]Lu J,Getz G,Miska EA,et al. MicroRNA expression profiles classify human cancers. Nature,2005,435(7043):834-838.
[64]Bao N,Lye KW,Barton MK,et al. MicroRNA binding sites in Arabidopsis classⅢ HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell,2004,7(5):653-662.
[65]Tuddenham L,Wheeler G,Ntounia-Fousara S,et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett,2006,580(17):4214-4217.
[66]Saito Y,Liang G,Egger G,et al. Specific activation of microRNA-127 with downregulation of the protooncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell,2006,9(6):435-443.
[67]Chuang JC,Jones PA. Epigenetics and microRNAs. Pediatr Res,2007,61(5):24R-9R.
[68]Chen C,Ridzon DA,Broomer AJ ,et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005,33(20):e179.
[69]Castoldi M,Schmidt S,Benes V,et al. A sensitive array for microRNA expression profiling(miChip)based on locked nucleic acids(LNA). RNA,2006,12(5):913-920.
[70]Castoldi M,Schmidt S,Benes V,et al. miChip:A microarray platform for expression profiling of microRNAs based on locked nucleic acid(LNA)oligonucleotide capture probes. Methods,2007,43(2):146-152.
[71]Wang Z. MicroRNA mimetics:Design,validation and applications. Humana Press,New Jersey,USA. 2012.
[72]Wang Z. The guideline of the design and validation of miRNA mimics. Methods Mol Biol,2011,676:211-223.
[73]Wang Z. The concept of multiple-target anti-miRNA antisense oligonucleotides technology. Methods Mol Biol,2011,676:51-57.
[74]Wang Z. The principle of miRNA-masking antisense oligonucleotides technology. Methods Mol Biol,2011,676:43-49.
[75]Hutvágner G,Simard MJ,Mello CC,et al. Sequence-specific inhibition of small RNA function. PLoS Biol,2004,2(4):E98.
[76]Meister G,Landthaler M,Dorsett Y,et al. Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing. RNA,2004,10(3):544-550.
[77]Davis S,Lollo B,Freier S,et al. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res,2006,34(8):2294-2304.
[78]Elmén J,Lindow M,Silahtaroglu A,et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008,36(4):1153-1162.
[79]Ørom UA,Kauppinen S,Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene,2006,372:137-141.
[80]Ebert MS,Neilson JR,Sharp PA. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells. Nat Methods,2007,4(9):721-726.
[81]Hammond SM. Soaking up small RNAs. Nat Methods,2007,4(9):694-695.
[82]Ebert MS,Sharp PA. Emerging roles for natural microRNA sponges. Curr Biol,2010,20R:858-861.
[83]Ebert MS,Sharp PA. MicroRNA sponges:progress and possibilities. RNA,2010,16(11):2043-2050.
[84]Choi WY,Giraldez AJ,Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science,2007,318(5848):271-274.
[85]Takamizawa J,Konishi H,Yanagisawa K. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res,2004,64(11):3753-3756.
[86]Calin GA,Ferracin M,Cimmino A,et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med,2005,353(17):1793-1801.
[87]Chim SS,Shing TK,Hung EC,et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem,2008,54(3):482-490.
[88]Lawrie CH,Gal S,Dunlop HM,et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol,2008,141(5):672-675.
[89]Ai J,Zhang R,Li Y,et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun,2010,391(1):73-77.
[90]Wang GK,Zhu JQ,Zhang JT,et al. Circulating microRNA:a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J,2010,31(6):p. 659-666.
[91]Cheng Y,Tan N,Yang J,et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci(Lond),2010,119(2):87-95.
[92]D’Alessandra Y,Devanna P,Limana F,et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J,2010,31(22):2765-2773.
[93]Gidlöf O,Andersson P,van der Pals J,et al. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction,are selectively dependent on renal elimination,and can be detected in urine samples. Cardiology,2011,118(4):217-226.
[94]Widera C,Gupta SK,Lorenzen JM,et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol,2011,51(5):872-875.
[95]Zhao Y,Samal E,Srivastava D,et al. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature,2005,436(7048):214-220.
[96]Kwon C,Han Z,Olson EN,et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA,2005,102(52):18986-18991.
[97]Chen JF,Mandel EM,Thomson JM,et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet,2006,38(2):228-233.
[98]Wang Z. MicroRNAs and cardiovascular disease. Bentham Science Publishers,Potomac,USA. 2010.
[99]van Rooij E,Sutherland LB,Liu N,et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA,2006,103(48):18255-18260.
[100]Yang,B,Lin H,Xiao J,et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med,2007,13(4):486-491.
[101]Carè A,Catalucci D,Felicetti F,et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med,2007,13(5):613-618.
[102]Wang Z,Luo X,Lu Y,et al. miRNAs at the heart of the matter. J Mol Med,2008,86(7):771-783.
[103]Yang B,Lu Y,Wang Z. Control of cardiac excitability by microRNAs. Cardiovasc Res,2008,79(4):571-580.
[104]Wang Z. The role ofmicroRNA in cardiac excitability. J Cardiovasc Pharmacol,2010,56(5):460-470.
[105]Zhao Y,Ransom JF,Li A,et al. Dysregulation of cardiogenesis,cardiac conduction,and cell cycle in mice lacking miRNA-1-2. Cell,2007,129(2):303-317.
[106]Cheng Y,Ji R,Yue J,et al. MicroRNAs are aberrantly expressed in hypertrophic heart:do they play a role in cardiac hypertrophy?Am J Pathol,2007,170(6):1831-1840.
[107]Tatsuguchi M,Seok HY,Callis TE,et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol,2007,42(6):1137-1141.
[108]Thum T,Galuppo P,Wolf C,et al. MicroRNAs in the human heart:a clue to fetal gene reprogramming in heart failure. Circulation,2007,116(3):258-267.
[109]van Rooij E,Sutherland LB,Qi X,et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science,2007,316(5824):575-579.
[110]Montgomery RL,Hullinger TG,Semus HM,et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation,2011,124(14):1537-1547.
[111]van Rooij E,Quiat D,Johnson BA,et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell,2009,17(5):662-673.
[112]Wang JX,Jiao JQ,Li Q,et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med,2011,17(1):71-78.
[113]Ji R,Cheng Y,Yue J,et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res,2007,100(11):1579-1588.
[114]Liu X,Cheng Y,Zhang S,et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res,2009,104(4):476-487.
[115]Lin Y,Liu X,Cheng Y,et al. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem,2009,284(12):7903-7913.
[116]Fish JE,Santoro MM,Morton SU,et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell,2008,15(2):272-284.
[117]Wang S,Aurora AB,Johnson BA,et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell,2008,15(2):261-271.
[118]Cordes KR,Sheehy NT,White MP,et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature,2009,460(7256):705-710.
[119]Kathryn N Ivey,Alecia Muth,Joshua Arnold,et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell,2008,2(3):219-229.
[120]Eulalio A,Mano M,Dal Ferro M,et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature,2012,492(7429):376-381.
[121]Yu XY,Song YH,Geng YJ,et al. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun,2008,376(3):548-552.
[122]Cheng Y,Liu X,Zhang S,et al. MicroRNA-21 protects against the H 2O 2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol,2009,47(1):5-14.
[123]Cheng Y,Zhu P,Yang J,et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res,2010,87(3):431-439.
[124]Wang X,Zhang X,Ren XP,et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation,2010,122(13):1308-1318.
[125]van Rooij E,Sutherland LB,Thatcher JE,et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA,2008,105(35):13027-13032.
[126]Roy S,Khanna S,Hussain SR,et al. MicroRNA expression in response to murine myocardial infarction:miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res,2009,82(1):21-29.
[127]Shan H,Zhang Y,Lu Y,et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res,2009,83(3):465-472.
[128]Pan Z,Sun X,Shan H,et al. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-â1 pathway. Circulation,2012,126(7):840-850.
[129]Lu Y,Zhang Y,Wang N,et al. microRNA-328 contributes to adverse electrical remodelling in atrial fibrillation. Circulation,2010,122(23):2378-2387.
[130]Luo X,Pan Z,Shan H,et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J Clin Invest,2013,123(5):1939-1951.
[131]Wang Z,Lu Y,Yang B. MicroRNAs and atrial fibrillation:new fundamentals. Cardiovasc Res,2010,89(4):710-721.
[132]Shan H,Li X,Pan Z,et al. Tanshinone ⅡA protects against sudden cardiac death induced by lethal arrhythmias via repression of microRNA-1. Br J Pharmacol,2009,158(5):1227-1235.
[133]Lu Y,Zhang Y,Shan H,et al. MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction:a new mechanism for ischaemic cardioprotection. Cardiovasc Res,2009,84(3):434-441.
[134]Zhang L,Wu Y,Li Y,et al. TanshinoneⅡA improves miR-133 expression through MAPK ERK1/2 pathway in hypoxic cardiac myocytes. Cell Physiol Biochem,2012,30(4):843-852.
[135]Xu C,Hu Y,Hou L,et al. â-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression. J Mol Cell Cardiol,2014,75:111-121.
[136]Suffredini S,Stillitano F,Comini L,et al. Long-term treatment with ivabradine in post-myocardial infarcted rats counteracts f-channel overexpression. Br J Pharmacol,2012,165(5):1457-1466.
[137]Christensen M,Schratt GM. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases. Neurosci Lett,2009,466(2):55-62.
[138]Mark N. Ziats,Owen M. Rennert. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry,2014,19(7):848-852.
[139]Gregory M Davis,Matilda A Haas,Roger Pocock. MicroRNAs:not“fine-tuners”but key regulators of neuronal development and function. Front Neurol,2015,6:245.
[140]Azeet Narayan,Ananth Bommakanti Abhijit A. Patel. High-throughput RNA profiling via up-front sample parallelization. Nat Methods,2015,12(4):343-346.
[141]Giraldez AJ,Cinalli RM,Glasner ME,et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science,2005,308(5723):833-838.
[142]Conaco C,Otto S,Han JJ,et al. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA,2006,103(7):2422-2427.
[143]Jaya Visvanathan,Seunghee Lee,Bora Lee,et al. microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev,2007,21(7):744-749.
[144]Cao X,Pfaff SL Gage FH. The functional study of miR-124 in the developing neural tube. Genes Dev,2007,21(5):531-536.
[145]Cheng HY,Papp JW,Varlamova O,et al. microRNA modulation of circadian-clock period and entrainment. Neuron,2007,54(5):813-829.
[146]Jongpil Kim,Keiichi Inoue,Jennifer Ishii,et al. A microRNA feedback circuit in midbrain dopamine neurons. Science,2007,317(5842):1220-1224.
[147]Anne Schaefer,Dónal O’Carroll,Chan Lek Tan,et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med,2007,204(7):1553-1558.
[148]Peter T Nelson,Wang-Xia Wang,Bernard W. Rajeev,MicroRNAs(miRNAs)in neurodegenerative diseases. Brain Pathol,2008,18(1):130-138.
[149]Sabrina Absalon,Dawn M Kochanek,Venkatesan Raghavan,et al. MiR-26b,upregulated in Alzheimer’s disease,activates cell cycle entry,tau-phosphorylation,and apoptosis in postmitotic neurons. J Neurosci,2013,33(37):14645-14659.
[150]Yuhai Zhao,Aileen Ⅰ Pogue,Walter J Lukiw. MicroRNA(miRNA)signaling in the human CNS in sporadic Alzheimer’s disease(AD)-novel and unique pathological features. Int J Mol Sci,2015,16(12):30105-30116.
[151]Gaofeng Wang,Joelle M van der Walt,Gregory Mayhew,et al. Variation in the miRNA-433 binding site of FGF20 confers risk for parkinson disease by overexpression of α-synuclein. Am J Hum Genet,2008,82(2):283-289.
[152]Gehrke S,Imai Y,Sokol N,et al. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature,2010,466(7306):637-641.
[153]Xia-Lian Xu,Yan Li,Fay Wang,et al. The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in drosophila. J Neurosci,2008,28(46):11883-11889.
[154]Dieter Edbauer,Joel R Neilson,Kelly A Foster,et al. Regulation of synaptic structure and function by fmrp-associated microRNAs miR-125b and miR-132. Neuron,2010,65(3):373-384.
[155]Klein ME,Lioy DT,Ma L,et al. Homeostatic regulation of MeCP2 expression by a creb-induced microRNA. Nat Neurosci,2007,10(12):1513-1514.
[156]Nomura T,Kimura M,Horii T,et al. MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet,2008,17(8):1192-1199.
[157]Xu B,Hsu PK,Karayiorgou M,et al. MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis,2012,46(2):291-301.
[158]Miller DT,Shen Y,Weiss LA,et al. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet,2009,46(4):242-248.
[159]Packer AN,Xing Y,Harper SQ,et al. The bifunctional microRNA miR-9/miR-9*regulates rest and corest and is downregulated in huntington’s disease. J Neurosci,2008,28(53):14341-14346.
[160]Bai M,Zhu X,Zhang Y,et al. Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life. PLoS One,2012,7(10):e46921.
[161]Stark KL,Xu B,Bagchi A,et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet,2008,40(6):751-760.
[162]International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature,2008,455(72010):237-241.
[163]Taganov KD,Boldin MP,Chang KJ,et al. NF-kappaB-dependent induction of microRNA miR-146 an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci. USA,2006,103(33):12481-12486.
[164]Sonkoly E,Wei T,Janson PC,et al. MicroRNAs:novel regulators involved in the pathogenesis of psoriasis PLoS One,2007,2(7):e610.
[165]Sonkoly E,Ståhle M,Pivarcsi A,et al. MicroRNAs and immunity:novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol,2008,18(2):131-140.
[166]Tan Z,Randall G,Fan J,et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet,2007,81:829-834.
[167]Dai Y,Huang YS,Tang M,et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus,2007,16(12):939-946.
[168]Nakasa T,Miyaki S,Okubo A,et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum,2008,58(5):1284-1292.
[169]Pauley KM. ,Satoh M,Chan AL,et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther,2008,10(4):R101.
[170]Fulci V,Scappucci G,Sebastiani GD,et al. miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol,2010,71(2):206-211.
[171]Bennasser Y,Le SY,Yeung ML,et al. MicroRNAs in human immunodeficiency virus-1 infection. Methods Mol Biol,2006,342:241-253.
[172]Bennasser Y,Le SY,Yeung ML,et al. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology,2004,1:43.
[173]Omoto S,Ito M,Tsutsumi Y,et al. HIV-1 nef suppression by virally encoded microRNA. Retrovirology,2004,1:44.
[174]Triboulet R,Mari B,Lin YL,et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science,2007,315(5818):1579-1582.
[175]Hariharan M. ,Scaria V,Pillai B,et al. Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun,2005,337(4):1214-1218.
[176]Swaminathan G,Nava-Martin S,Martin-Garcia J,et al. MicroRNAs and HIV-1 infection:antiviral activities and beyond. J Mol Biol,2014,426(6):1178-1197.
[177]Chable-Bessia C,Meziane O,Latreille D,et al. Suppression of HIV-1 replication by microRNA effectors. Retrovirology,2009,6:26.
[178]Hydbring P,Badalian-Very G. Clinical applications of microRNAs. Version 3. F1000Res,2013,2:136.
[179]Shibata C,Otsuka M,Kishikawa T,et al. Current status of miRNA-targeting therapeutics and preclinical studies against gastroenterological carcinoma. Mol Cell Ther,2013,1:5.