蚁群智能优化方法及其应用
上QQ阅读APP看书,第一时间看更新

参考文献

[1] 陈宝林.最优化理论与算法[M].北京:清华大学出版社,2005.

[2] 康崇禄.蒙特卡罗方法理论和应用[M].北京:科学出版社,2016.

[3] 王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.

[4] Russell C.Eberhart, Yuhui Shi.计算智能:从概念到实现[M].北京:人民邮电出版社,2009.

[5] Dorigo M, Stützle T.蚁群优化[M].张军,胡晓敏,罗旭耀,译.北京:清华大学出版社,2007.

[6] Dorigo M, Maniezzo V, Colorni A.Ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on System Man, and Cybernetics-Part B,1996,26:29~41.

[7] Dorigo M, Caro G Di.The ant colony optimization metaheuristic[C].Corne D, Dorigo M, Glover F, ed.New Ideas in Optimization.London, U K:McGraw-Hill,1999:11~32.

[8] Zecchin A C, Simpson A R, Marier H R, et al.Parametric study for an ant algorithm applied to water distribution system optimization[J].IEEE Transactions on Evolutionary Computation,2005,9(2):175~191.

[9] Zhang N, Feng Z.Cooperative ant colony optimization for mult-i satellite resource scheduling problem[C].2007 IEEE Congress on Evolutionary Computation. Singapore,2007:2822~2828.

[10] 金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526~530.

[11] 丁滢颍,何衍,蒋静坪.基于蚁群算法的多机器人协作策略[J].机器人,2003, 25(5):414~418.

[12] 董玉成,陈义华.基于蚂蚁算法的移动机器人路径规划[J].重庆大学学报,2003,26(3):49~51.

[13] 樊晓平,罗熊,易晟.复杂环境下基于蚁群算法的多机器人路径规划[J].控制与决策,2004,19(2):166~170.

[14] 朱庆保.动态复杂环境下的机器人路径规划蚂蚁预测算法[J].计算机学报,2005,28(11):1898~1906.

[15] 侯云鹤,熊信艮,吴耀武,等.基于广义蚁群算法的电力系统经济负荷分配[J].中国电机工程学报,2003,23(3):59~64.

[16] Gomez J F, Khodr H M, De Oliverira P M, et al.Ant colony system algorithm for the planning of primary distribution circuits[J].IEEE Transactions on Power Systems,2004,192(2):996~1004.

[17] 翟海保,程浩忠,吕干云,等.多阶段输电网络最优规划的并行蚁群算法[J].电力系统自动化,2004,28(20):37~42.

[18] 程晓荣,叶显熠,梁玉泉,等.基于改进蚁群算法的输电网络扩展规划[J].电力系统自动化,2006,30(20):37~40.

[19] 樊友平,陈允平,黄席樾,等.运载火箭控制系统漏电故障诊断研究[J].宇航学报,2004,25(5):507~513.

[20] 汪镭,吴启迪.蚁群算法在系统辨识中的应用[J].自动化学报,2003,29(1):102~109.

[21] Parpinelli R S, Lopes H S, Freitas A A.Data mining with an ant colony optimization algorithm[J].IEEE Transactions on Evolutionary Computation, 2002,6(4):321~332.

[22] Tsai C F, Tsai C W, Wu H C, et al.ACOAF:a novel data clustering approach for data mining in large database[J].Journal of System and Software,2004,73(1):133~145.

[23] Meshoul S, Batouche M.Ant colony system with external dynamics for point matching and pose estimation[J].Pattern Recognition,2002,3:823~826.

[24] 闫伟,张浩,陆剑峰.一种离群数据挖掘新方法的研究与应用[J].控制与决策,2006,21(5):563~567.

[25] Xu X H, Chen L.An adaptive ant clustering algorithm[J].Journal of Software, 2006,17(9):1884~1889.

[26] 郑肇葆,叶志伟.基于蚁群行为仿真的影像纹理分类[J].武汉大学学报,2004, 29(8):669~673.

[27] 冯远静.群体协同蚁群算法及其在图像分割中的应用[D].西安:西安交通大学,2004.

[28] 王晓年,冯远静,冯祖仁.一种基于主动轮廓模型的蚁群图像分割算法[J].控制理论与应用,2006,23(4):515~522.

[29] 王和平,柳长安,李为吉.基于蚁群算法的无人机任务规划[J].西北工业大学学报,2005,23(1):98~101.

[30] 李士勇,杨丹.基于改进蚁群算法的巡航导弹航迹规划[J].宇航学报,2007,28(4):903~907.

[31] 罗德林,段海滨,吴顺详,等.基于启发式蚁群算法的协同多目标攻击空战决策研究[J].航空学报,2006,27(6):1166~1170.

[32] 李亮,迟世春,林皋.基于蚁群算法的复合行法及其在边坡稳定分析中的应用[J].岩土工程学报,2004,26(5):691~696.

[33] 贺益君,陈德钊.连续约束蚁群优化算法的构建及其在丁烯烷化过程中的应用[J].化工学报,2005,56(9):1708~1713.

[34] 何莲莲,石峰,周怀北.改进的蚁群算法在2DHP模型中的应用[J].武汉大学学报,2005,51(1):33~38.

[35] 霍军周,李广强,腾弘飞,等.人机结合蚁群/遗传算法及其在卫星舱布局设计中的应用[J].机械工程学报,2005,41(3):112~116.

[36] 段海滨,王道波,黄向华,等.基于蚁群算法的PID参数优化[J].武汉大学学报,2004,37(5):97~100.

[37] 段海滨,王道波,于秀芬.基于改进蚁群算法的飞行仿真转台的控制优化[J].中国空间科学技术,2007,28(4):36~43.

[38] 李士勇.蚁群算法及其应用[M].哈尔滨:哈尔滨工业大学出版社,2004.

[39] 段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005.

[40] 戈德赖希.计算复杂性[M].北京:人民邮电出版社,2010.

[41] 王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2002.

[42] 汪定伟.智能优化方法[M].北京:高等教育出版社,2007.

[43] 张军.计算智能[M].北京:清华大学出版社,2009.

[44] 段海滨.仿生智能计算[M].北京:科学出版社,2011.

[45] David L.Poole, Alan K.Mackworth.人工智能:计算agent基础[M].北京:机械工业出版社,2015.

[46] Millonas M M.Swarms, phase transitions, and collective intelligence[M]. Langton C G, ed.Artificial LifeⅢ, Reading, MA:Addison-Wesley Publishing Co, 1994.

[47] 柯良军,冯祖仁,冯远静.有限级信息素蚁群算法[J].自动化学报,2006,32(2):296~303.

[48] Liangjun Ke, Zuren Feng, Zhigang Ren, et al.An ant colony optimization approach for the multidimensional knapsack problem[J].Journal of Heuristics, 2010,16(1):65~83.

[49] Liangjun Ke, Claudia Archetti, Zuren Feng.Ants can solve the team orienteering problem[J].Computers and Industrial Engineering,2008,54(3):648~665.

[50] Liangjun Ke, Zuren Feng, Zhigang Ren.An efficient ant colony optimization approach to attribute reduction in rough settheory[J].Pattern Recognition Letters,2008,29(9):1351~1357.

[51] Liangjun Ke, Qingfu Zhang, Roberto Battiti, MOEA/D-ACO:A Multiobjective Evolutionary Algorithm Using Decomposition and Ant Colony [J]. IEEE Transactions on Cybernetics,2013,43(6):1845~1859.

[52] Zhang N, Feng Z, Ke L J.Guidance-solution based ant colony optimization for satellite control resource scheduling problem[J].Applied Intelligence,2011,35(3):436~444.