![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1739594598-E8xC7SZMEVfDchNP4QFU6hKbYuZzLOAJ-0-ff0e1375ced2bfc1a823878504c633ae)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1739594598-y0v7bqcGNYI4YsQPOaLXtZ2XCMxkOGaj-0-4da5f3cda891ac9136b726b1da4aa0ac)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1739594598-v6KgE7Kezk0clanM2O1wyT85Mdz67kux-0-ab40d30c420e6e2650f746cd77afe163)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1739594598-BHrPxbaM74GAc1lvnjOCJWWACr7RskKN-0-c8d3eeb0ca41d851cfd50214cbbfb4f6)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1739594598-CBjh6xFFGQEhEZC1v9TUX954gGgEqTfh-0-c8b9619b3366a8681e1d39fd6825569a)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1739594598-cJFV1pSVt3rBWO3QrZivLaE6vPAoXlUL-0-7956881b94ad1ac50246d0312d17b4f4)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1739594598-KgQA536fm7jSdyt2g6jg8yT2hxOS10zT-0-ce13bbba9dd66c3231622c7bcb7f9b33)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1739594598-QKm0JabYQ0PjV1pAudb9IGOgaym7GGSS-0-f791f937f31226a61fd6db55df9fe5f9)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1739594598-K7nVzifI2C0njQQKj5tQEombNbJFWnrF-0-361ac8f41ef4a4815af3c539d6fa82a4)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1739594598-fFCBTcpFEs0cAKWthgYZYOc8so61UnXB-0-3ef28f393c24c692e1b30e638c0d2ff1)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1739594598-o0lN8IG0CbBlFP7DeSytEgjURBoTVKva-0-d2d7e222f36c36dc6785343d847a4003)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1739594598-J5PsfMnfxatCzGY7O7hjsgIOd98lDfoG-0-9157dc25e47b853672815d21c30bfdea)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1739594598-I8kmq9nTfyU6nEJzxht6Qc0pOi6iLfk2-0-005fdd2ccf8cb61ec056220bc2ff84c9)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1739594598-iYQebcOsLwFNMdRilTtA4jo70aJRfkCR-0-ae6dd3952695889185c931d762453fb7)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1739594598-NdhGMmoxSrt1tGxsWVWIXqcdHrGlhKz8-0-e64e624008621078a114a09f8c4f10cd)