为什么写这本书
笔者自2008年加入IBM SPSS,从一个单纯的软件开发者变身为数据分析行业的参与者至今已经快11年了。在这段时间,数据分析行业发生了巨大变化,作为行业的参与者,笔者自身从业经历也在不停地发生变化。总结下来,笔者遵从“数据分析驱动业务”的主线,按照“软件开发人员——数据挖掘工具开发者和团队管理者——资深数据科学家——深入理解业务的资深数据科学家——深刻理解数字化变革的高级咨询顾问和管理者”的职业路径,在数据分析行业的浩瀚波澜中前行。这些年的从业经历,笔者有如下几点感触。
(1)从事数据分析行业的人是需要不断充电的
用“日新月异”来形容数据分析的发展是最为确切的了,新技术、新论文不断涌现。大量书籍上描述的是一些基本的算法,对于新技术、新算法,我们应该永远保持不断学习的态度,才能在日常数据分析实践中不断发挥作用。书中并没有讲大家在很多书籍上能看到的传统算法,而是重点讲一些大多数书籍还未涉及的内容。
(2)真正发挥数据价值需要融会贯通数据与业务
在很多情况下,当数据科学家花费大量时间和精力构建出模型后,兴高采烈地试图交给业务人员使用时,往往会遇到一个有趣的情况:业务人员听不懂你对高深算法的解释,甚至不在乎你对数据的各种费心处理,他们只关心实际的问题,如模型到底效果如何。所以在本书中穿插了大量与业务相关的例子。
(3)数字化变革的浪潮与数据分析的广泛应用密不可分
数字化变革是目前几乎所有企业都无法回避的任务。企业由于所处行业、自身特点等原因,需要量身定制数字化转型的战略。大型企业需要选择发展重点作为突破方向,在转型过程中既要做好技术基础,也需要大力推行敏捷的方法,同时要对人们的观念、组织内的流程等方面做出更新。数据分析的广泛应用在数字化变革中势必要发挥巨大作用。笔者认为数据分析者要“抬头看”,深刻地参与到数字化变革的浪潮中。
本书的写作历时近一年,笔者在做好本职工作的同时花费了巨大的精力总结归纳过往项目经验、学习研究新技术。这个过程既是一个自我充电的过程,也是一个不断总结归纳的过程。笔者试图尽力做到将自己走过的路按照深入浅出的方式讲出来,期望提供一定的参考价值。这也是笔者写这本书的目的。
笔者相信书中难免有一些疏漏,非常希望能够得到阅读反馈。读者可以通过yfc@hzbook.com联系到笔者。