第1章 人工智能概述
本章主要是人工智能的基本概述,包括人工智能的起源和发展,以及人工智能的两个重要组成部分:机器学习和深度学习。深度学习一直在持续发展,我们将用两小节来介绍深度学习的崛起和重要应用领域,在最后一节中,我们引出了人工智能未来的重要发展方向一一自动化机器学习技术(Automl)。
1.1 全面了解人工智能
1.1.1 人工智能定义
在计算机科学领域中,人工智能是一种机器表现的行为,这种行为能以与人类智能相似的方式对环境做出反应并尽可能提高自己达成目的的概率。
人工智能这个概念最早于1956年8月的达特茅斯会议上由约翰·麦卡锡(John McCarthy)、马文·明斯基(Marvin Minsky)、克劳德·香农(Claude Shannon)、纳撒尼尔·罗切斯特(Nathaniel Rochester)等人提出。在此之前,人工智能有着许多种叫法,如“自动机理论”“复杂数据处理”等。
会议召开的两年前,也就是1954年,达特茅斯学院数学系有4位教授退休,这对于达特茅斯学院这样的小学校来说无疑是巨大的损失。刚上任的系主任约翰·克门尼(John Kemeny)赶忙向母校普林斯顿大学求援,从母校数学系带回4位刚毕业的博士来任教,而麦卡锡就是其中之一。1955年夏,麦卡锡应邀参与IBM的一个商业项目,邀请他的人是罗切斯特。罗切斯特是IBM第一代通用机701的主设计师,并且对神经网络表现出极大的兴趣。俩人一拍即合,决定发起一个将于次年夏天举办的研讨会,还说服了香农和在哈佛做研究员的明斯基来共同提议。麦卡锡给这个研讨会起了个别出心裁的名字——“人工智能夏季研讨会”(Summer Research Project on Artificial Intelligence)。同年9月2日,麦卡锡、明斯基、香农和罗切斯特正式发出提案引入“人工智能”一词,该提案的主要内容如下:
“我们提议于1956年夏,在新罕布什尔州汉诺威的达特茅斯学院进行一项10人、为期两个月的人工智能研究。这项研究基于这样一个猜想,即原则上,我们可以足够精确地描述学习或智能的任何其他特征的各个方面,从而能够让机器来进行模拟。我们试图找到方法让机器使用语言、形成抽象和概念、解决人类尚未解决的各类问题以及自我改进等。我们认为,一群经过精心挑选的科学家一起努力一个夏天,就可以在上述的一个甚至多个问题上取得重大进展。”
会议于1956年6月开始,同年8月结束。会议讨论了人工智能相关问题的各个方面,如自动化计算机、如何通过编程让计算机使用语言、神经网络、计算规模的理论、自我改进、随机性和创见性等。
明斯基认为,设计出一种具备某种特定学习能力的机器并非不可能,机器的本质是通过某种转换将输入变成输出的过程。机器的这种反应能力可以通过不断的“试错”过程训练获得。例如我们可以将这样的一台机器放置在某种特定的环境中,不断给予它“成功”和“失败”的判据来训练它达成某种目标的能力。更进一步,如果机器能通过学习使自身形成感知和运动抽象能力,那么它就会进行内部探索找寻解决问题的方案。
罗切斯特分享了关于机器性能的独创性话题。在为自动计算器编写程序时,人们通常会向机器提供一套规则,这些规则涵盖了机器可能会面对的各种意外情况。机器遵守这一套规则但不会表现出独创性或常识。此外,只有当机器因为规则矛盾而变得混乱时,人们才会对自己设计出糟糕的规则感到恼火。最后,在编写机器程序时,有时人们必须以非常费力的方式解决问题,然而,如果机器有一点直觉或者可以做出合理的猜测,问题就可以直接被解决。
会议进行了两个月,虽然每个人对AI的定义都不尽相同,但它却具有重要的开创意义和深远影响。由于会议上提出了人工智能(Artificial Intelligence)这一概念,因而1956年被称作“人工智能元年”。