![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
2.4.1 隐函数的求导法则
1.隐函数求导法
一般地,如果变量x,y之间的函数关系由方程F(x,y)=0所确定,那么这种函数就叫作由方程所确定的隐函数.把一个隐函数化成显函数,叫作隐函数的显化.如由方程x+y3-1=0解出.但有些隐函数显化很困难,甚至无法显化为初等函数,如x+y-exy=0,那么这样的函数怎样求导呢?
方法就是:方程两边同时对x求导,且y是x的函数;遇到含y的函数,要按复合函数求导法则进行求导.
例如,(siny)'=cosy·y',特殊地,当y=x时,(sinx)'=cosx·(x)'=cosx.
下面通过几个具体的例子来说明这个方法.
例1 求由方程y6-3x2+6x3y2=0所确定的隐函数y=y(x)的导数y'.
解 方程两边同时对x求导,可得
6y5·y'-6x+6(3x2·y2+x3·2y·y')=0,
由上式解出y',便得隐函数的导数为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00064008.jpg?sign=1739908830-Ynzs7PVtnOhm9Xiok7nvbKEYHNnLI8K7-0-73a7fd8985f9e745cb9ca2a4ca3edd99)
例2求由方程x+y-exy=0所确定的隐函数y=y(x)的导数y'x,并求y'x(0).
解 方程两边同时对x求导,可得
1+y'-exy·(xy)'=0,
即
1+y'-exy·(y+xy')=0,
由上式解出y',便得隐函数的导数为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065001.jpg?sign=1739908830-N9XW1GjT3UrOu0ByvSZjthr85tGgho5k-0-7815c184b0b2ff21e77b3f77254f7442)
当x=0时,代入x+y-exy=0,得y=1,代入y',得
y'x(0)=0.
例3 求椭圆在点M
处的切线方程.
解 椭圆方程两边同时对x求导,可得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065004.jpg?sign=1739908830-QfYMfZGgK46H9vScIV0r0FvXpSa5Hx9x-0-87d0c68211ec92e0c104a032e0433edd)
由上式解出y',便得隐函数的导数为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065005.jpg?sign=1739908830-JENblXTmM3jjgop7qYpyiMLCdgr1MEkZ-0-7a872d370e7222ada0358fc9f5841ae8)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065006.jpg?sign=1739908830-U1mSeRdO5BCinPiiQor7z5x1Ibqvpgyk-0-5acd4236083ad55997bd60b5e9fa3350)
所以椭圆在点M 处的切线方程为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065008.jpg?sign=1739908830-gQ7Ha1D9XewflG3LnnUTsJuzkq6KGxZZ-0-7960759af016dfa6b5ca7c463c899eef)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065009.jpg?sign=1739908830-OBe0ezdo1mu9WCX0EBqQYvCF2xZ6Fqil-0-a2ec915891dc62c947db860fe3443b62)
2.取对数求导法
根据隐函数的求导方法,还可以得到一个简化求导运算的方法,即取对数求导法.它适合于由几个因式通过乘、除、乘方、开方所构成的比较复杂的函数(包括幂指型函数y=u(x)v(x))的求导.这个方法是先取对数,再化乘、除为加、减,化乘方、开方为乘积,然后利用隐函数的求导方法求导.
例4 求下列函数的导数.
(1);(2)y=xsinx(x>0,x≠1).
解 (1)先在等式两边取绝对值,再取对数,得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065011.jpg?sign=1739908830-c6pJZTN2KHmCeWeMlRtrmwtYnsV4ZcJm-0-5ef66d3250aaf9aac93da540d59627ad)
两边同时对x求导,得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065012.jpg?sign=1739908830-SDE2DRRVCkOgJUh4W7rA4oozXMbU2NKN-0-5a10b4dccccc89e2f4615333f53ef911)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065013.jpg?sign=1739908830-hPl9HKCBTRp4lsq24ANqTTNqEkYKfuyZ-0-5e10d5079de65dfb291375d273197130)
(2)这是幂指型函数,对y=xsinx两边取对数,得
lny=sinxlnx,
两边同时对x求导,得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00066001.jpg?sign=1739908830-cmdVoPTutGZPnPFHpGshCNztCJQoc4d7-0-2aab202fb32847adc94fb522eee3ce87)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00066002.jpg?sign=1739908830-5ctBuTLaVykaV5tHffsy9rkewixoaDMR-0-66cdc291c32c83d92fedb653b1006856)