![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.1 四则运算法则
定理1 设函数u=u(x)及v=v(x)均在点x处可导,那么它们的和、差、积、商(除分母为零的点外)也均在点x处可导,且
(1)(u±v)'=u'±v';
(2)(uv)'=u'v+uv';
(3).
定理中(1),(2)可以推广到有限个函数的情形.
推论1[cu(x)]'=cu'(x)(c为常数);
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00058005.jpg?sign=1739897842-dlRW70QhGY5dVeF8hvzjB4bUnMCE8JKv-0-3ecba7992117cc68894b2e9581c20c82)
例1 已知函数3-3x2+,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00058007.jpg?sign=1739897842-WoHRGyU6LHd1wT55U1wu64yJIGWqLfoT-0-6eb43b1608ef789dae3ae2fee6df61ee)
例2 已知函数,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059001.jpg?sign=1739897842-ZBx1lH3Z4y4lAAj4isWAEUfxpgqCI2t1-0-9d8f2b8e86bcf3fa69411a06d9ab4e1d)
例3 已知函数f(x)=xcosxlnx,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059002.jpg?sign=1739897842-Oze0REnmmcSczm3kaRzVztd7RFM8FS6S-0-159d7436954301dcb1abb09d3f47a60b)
例4 已知函数x,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059004.jpg?sign=1739897842-CUaDpAbakiqpJCu6c3imvOjJ4a6jv7Rg-0-4ab4a2b350f7fb571dd55dd63dbd8811)
发现:因为 ,ln2都是常数,所以
,(ln2)'=0.
例5 证明(tanx)'=sec2x.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059007.jpg?sign=1739897842-YzcBRnc9uWVeP2bvDwh2wt6IIpB7PQgW-0-d807a4eb291d6c2e5456080d25aa8b13)
所以
(tanx)'=sec2x.
同理可证明
(cotx)'=-csc2x,(secx)'=secxtanx,(cscx)'=-cscxcotx.