征信大数据:理论与实践(中国金融四十人论坛书系)
上QQ阅读APP看书,第一时间看更新

实践篇

第四章
基于数据挖掘的个人征信系统异常查询实时监测模型

一、引言

全国集中统一的个人征信系统共收集8.8亿个自然人的信用信息,基本覆盖全国每一个有信用活动的信息主体,其中个人贷款和信用卡账户信息21.5亿笔,开通查询用户15.9万个,对外提供29.2亿份个人信用报告。作为金融系统重要基础设施的个人征信系统,在提高商业银行风险管理水平、提高审贷效率、拒绝高风险客户、清收不良贷款等方面发挥重要作用。2013年3月15日《征信业管理条例》出台并正式实施,是我国征信业发展史上的一个里程碑,不仅严格规范个人征信业务规则,还要求切实保护个人信用信息。该条例要求信息主体以外的单位或者个人向征信机构查询个人信用报告时,应当取得信息主体本人的书面同意并约定用途。信息使用者应当按照与信息主体约定的用途使用个人信息,不得用作约定以外的用途,不得未经信息主体同意向第三方提供。但违规查询个人信用报告的情况时有发生,为了更好地保护信息主体的权益,维护个人征信系统的客观、公正和权威,急需通过数据挖掘技术,分析查询行为,建立异常查询实时监测模型。

为了能更准确地定位异常查询行为,我们必须改变以业务经验驱动为核心的监测模式,尝试从数据出发,通过深入分析,挖掘出隐藏在大量正常数据中的异常查询行为。