大数据技术原理与应用(第2版)
上QQ阅读APP看书,第一时间看更新

3.1 分布式文件系统

相对于传统的本地文件系统而言,分布式文件系统(Distributed File System)是一种通过网络实现文件在多台主机上进行分布式存储的文件系统。分布式文件系统的设计一般采用“客户机/服务器”(Client/Server)模式,客户端以特定的通信协议通过网络与服务器建立连接,提出文件访问请求,客户端和服务器可以通过设置访问权来限制请求方对底层数据存储块的访问。

目前,已得到广泛应用的分布式文件系统主要包括GFS和HDFS等,后者是针对前者的开源实现。

3.1.1 计算机集群结构

普通的文件系统只需要单个计算机节点就可以完成文件的存储和处理,单个计算机节点由处理器、内存、高速缓存和本地磁盘构成。

分布式文件系统把文件分布存储到多个计算机节点上,成千上万的计算机节点构成计算机集群。与之前使用多个处理器和专用高级硬件的并行化处理装置不同的是,目前的分布式文件系统所采用的计算机集群都是由普通硬件构成的,这就大大降低了硬件上的开销。

计算机集群的基本架构如图3-1所示。集群中的计算机节点存放在机架(Rack)上,每个机架可以存放8~64个节点,同一机架上的不同节点之间通过网络互连(常采用吉比特以太网),多个不同机架之间采用另一级网络或交换机互连。

图3-1 计算机集群的基本架构

3.1.2 分布式文件系统的结构

在我们所熟悉的 Windows、Linux 等操作系统中,文件系统一般会把磁盘空间划分为每 512字节一组,称为“磁盘块”,它是文件系统读写操作的最小单位,文件系统的块(Block)通常是磁盘块的整数倍,即每次读写的数据量必须是磁盘块大小的整数倍。

与普通文件系统类似,分布式文件系统也采用了块的概念,文件被分成若干个块进行存储,块是数据读写的基本单元,只不过分布式文件系统的块要比操作系统中的块大很多。比如,HDFS默认的一个块的大小是64 MB。与普通文件不同的是,在分布式文件系统中,如果一个文件小于一个数据块的大小,它并不占用整个数据块的存储空间。

分布式文件系统在物理结构上是由计算机集群中的多个节点构成的,如图3-2所示。这些节点分为两类:一类叫“主节点”(Master Node),或者也被称为“名称节点”(NameNode);另一类叫“从节点”(Slave Node),或者也被称为“数据节点”(DataNode)。名称节点负责文件和目录的创建、删除和重命名等,同时管理着数据节点和文件块的映射关系,因此客户端只有访问名称节点才能找到请求的文件块所在的位置,进而到相应位置读取所需文件块。数据节点负责数据的存储和读取,在存储时,由名称节点分配存储位置,然后由客户端把数据直接写入相应数据节点;在读取时,客户端从名称节点获得数据节点和文件块的映射关系,然后就可以到相应位置访问文件块。数据节点也要根据名称节点的命令创建、删除数据块和冗余复制。

图3-2 大规模文件系统的整体结构

计算机集群中的节点可能发生故障,因此为了保证数据的完整性,分布式文件系统通常采用多副本存储。文件块会被复制为多个副本,存储在不同的节点上,而且存储同一文件块的不同副本的各个节点会分布在不同的机架上,这样,在单个节点出现故障时,就可以快速调用副本重启单个节点上的计算过程,而不用重启整个计算过程,整个机架出现故障时也不会丢失所有文件块。文件块的大小和副本个数通常可以由用户指定。

分布式文件系统是针对大规模数据存储而设计的,主要用于处理大规模文件,如TB级文件。处理过小的文件不仅无法充分发挥其优势,而且会严重影响到系统的扩展和性能。

3.1.3 分布式文件系统的设计需求

分布式文件系统的设计目标主要包括透明性、并发控制、可伸缩性、容错以及安全需求等。但是,在具体实现中,不同产品实现的级别和方式都有所不同。表3-1给出了分布式文件系统的设计需求及其具体含义,以及HDFS对这些指标的实现情况。

表3-1 分布式文件系统的设计需求