2.2 Hadoop生态系统
经过多年的发展,Hadoop生态系统不断完善和成熟,目前已经包含了多个子项目(见图2-2)。除了核心的HDFS和MapReduce以外,Hadoop生态系统还包括Zookeeper、HBase、Hive、Pig、Mahout、Sqoop、Flume、Ambari等功能组件。需要说明的是,Hadoop 2.0中新增了一些重要的组件,即HDFS HA和分布式资源调度管理框架YARN等,但是为了循序渐进地理解Hadoop,在这里暂时不讨论这些新特性,在系统学习完MapReduce章节内容后,在第8章Hadoop再探讨中将会详细讨论从Hadoop1.0到2.0的特性变化。
图2-2 Hadoop生态系统
2.2.1 HDFS
Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)是Hadoop项目的两大核心之一,是针对谷歌文件系统(Google File System,GFS)的开源实现。HDFS具有处理超大数据、流式处理、可以运行在廉价商用服务器上等优点。HDFS 在设计之初就是要运行在廉价的大型服务器集群上,因此在设计上就把硬件故障作为一种常态来考虑,可以保证在部分硬件发生故障的情况下仍然能够保证文件系统的整体可用性和可靠性。HDFS放宽了一部分POSIX(Portable Operating System Interface)约束,从而实现以流的形式访问文件系统中的数据。HDFS在访问应用程序数据时,可以具有很高的吞吐率,因此对于超大数据集的应用程序而言,选择HDFS作为底层数据存储是较好的选择。
2.2.2 HBase
HBase是一个提供高可靠性、高性能、可伸缩、实时读写、分布式的列式数据库,一般采用HDFS作为其底层数据存储。HBase是针对谷歌BigTable的开源实现,二者都采用了相同的数据模型,具有强大的非结构化数据存储能力。HBase与传统关系数据库的一个重要区别是,前者采用基于列的存储,而后者采用基于行的存储。HBase具有良好的横向扩展能力,可以通过不断增加廉价的商用服务器来增加存储能力。
2.2.3 MapReduce
Hadoop MapReduce是针对谷歌MapReduce的开源实现。MapReduce是一种编程模型,用于大规模数据集(大于1 TB)的并行运算,它将复杂的、运行于大规模集群上的并行计算过程高度地抽象到了两个函数——Map 和 Reduce 上,并且允许用户在不了解分布式系统底层细节的情况下开发并行应用程序,并将其运行于廉价计算机集群上,完成海量数据的处理。通俗地说,MapReduce 的核心思想就是“分而治之”,它把输入的数据集切分为若干独立的数据块,分发给一个主节点管理下的各个分节点来共同并行完成;最后,通过整合各个节点的中间结果得到最终结果。
2.2.4 Hive
Hive是一个基于Hadoop的数据仓库工具,可以用于对Hadoop文件中的数据集进行数据整理、特殊查询和分析存储。Hive 的学习门槛较低,因为它提供了类似于关系数据库 SQL 语言的查询语言——Hive QL,可以通过Hive QL语句快速实现简单的MapReduce统计,Hive自身可以将Hive QL语句转换为MapReduce任务进行运行,而不必开发专门的MapReduce应用,因而十分适合数据仓库的统计分析。
2.2.5 Pig
Pig是一种数据流语言和运行环境,适合于使用Hadoop和MapReduce平台来查询大型半结构化数据集。虽然MapReduce应用程序的编写不是十分复杂,但毕竟也是需要一定的开发经验的。Pig的出现大大简化了Hadoop常见的工作任务,它在MapReduce的基础上创建了更简单的过程语言抽象,为Hadoop应用程序提供了一种更加接近结构化查询语言(SQL)的接口。Pig是一个相对简单的语言,它可以执行语句,因此当我们需要从大型数据集中搜索满足某个给定搜索条件的记录时,采用 Pig要比 MapReduce具有明显的优势,前者只需要编写一个简单的脚本在集群中自动并行处理与分发,而后者则需要编写一个单独的MapReduce应用程序。
2.2.6 Mahout
Mahout是Apache软件基金会旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。Mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。此外,通过使用 Apache Hadoop 库,Mahout 可以有效地扩展到云中。
2.2.7 Zookeeper
Zookeeper是针对谷歌Chubby的一个开源实现,是高效和可靠的协同工作系统,提供分布式锁之类的基本服务(如统一命名服务、状态同步服务、集群管理、分布式应用配置项的管理等),用于构建分布式应用,减轻分布式应用程序所承担的协调任务。Zookeeper使用Java编写,很容易编程接入,它使用了一个和文件树结构相似的数据模型,可以使用Java或者C来进行编程接入。
2.2.8 Flume
Flume是Cloudera提供的一个高可用的、高可靠的、分布式的海量日志采集、聚合和传输的系统。Flume 支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume 提供对数据进行简单处理并写到各种数据接受方的能力。
2.2.9 Sqoop
Sqoop是SQL-to-Hadoop的缩写,主要用来在Hadoop和关系数据库之间交换数据,可以改进数据的互操作性。通过Sqoop可以方便地将数据从MySQL、Oracle、PostgreSQL等关系数据库中导入Hadoop(可以导入HDFS、HBase或Hive),或者将数据从Hadoop导出到关系数据库,使得传统关系数据库和Hadoop之间的数据迁移变得非常方便。Sqoop主要通过JDBC(Java DataBase Connectivity)和关系数据库进行交互,理论上,支持JDBC的关系数据库都可以使Sqoop和Hadoop进行数据交互。Sqoop 是专门为大数据集设计的,支持增量更新,可以将新记录添加到最近一次导出的数据源上,或者指定上次修改的时间戳。
2.2.10 Ambari
Apache Ambari是一种基于Web的工具,支持Apache Hadoop集群的安装、部署、配置和管理。Ambari目前已支持大多数Hadoop组件,包括HDFS、MapReduce、Hive、Pig、HBase、Zookeeper、Sqoop等。