![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§2.1 消元法原理
导学提纲
1.线性方程组的一般形式是什么?
2.何谓线性方程组的一个解?解方程组的目的是什么?
3.何谓两个线性方程组同解?
4.对线性方程组可以施行哪些同解变换?
5.观察例题、动手做习题,体会消元法步骤;怎么判定线性方程组有唯一解、无解以及有无穷多解?
本章讨论一般线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0068_0001.jpg?sign=1739912112-g0y4xX9iewABbIz974Noh58tHRQVJLb5-0-2e8d878b7c87716902f32d60404b60ec)
其中x1, x2, …, xn是未知量;aij(i=1,2, …, s; j=1,2, …, n)表示第i个方程xj的系数;bi(i=1,2, …, s)表示第i个方程的常数项.
定义2.1.1 分别用数c1, c2, …, cn代替x1, x2, …, xn,如果使方程组(1)中每一个方程都变成恒等式,则称n元有序数组(c1, c2,…, cn)是方程组(1)的一个解.解方程组就是判断(1)是否有解?若有解,求出全部解.
定义2.1.2 设线性方程组解,则称这两个方程组同解或等价.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0068_0002.jpg?sign=1739912112-tI6cHsy0DsaPFNqiDAJcZrG9cgcRTbbq-0-11c175e6a17d3cb046bb87355cb432d8)
如果线性方程组(1)的解都是(2)的解;并且(2)的解也都是(1)的
定理2.1.1 对线性方程组(1)施行以下三种变换,所得方程组与(1)同解.
(1)对换两个方程(换法变换);
(2)用非零数c乘以某一个方程(倍法变换);
(3)将某一个方程的k倍加到另一个方程上去(消法变换).
证 不失一般性,设方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0001.jpg?sign=1739912112-rUtsZEDpoKp7aLHgJD5PETAGvSfYoCbs-0-28ced424b48b6bbd8d873b152f30600a)
对换(3)中两个方程,得方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0002.jpg?sign=1739912112-XZVC5zMkOKsU91azClQX9HpuHiyLky88-0-030473ac34fd5ec50f18fe5c1bbb6bfe)
设(c1, c2, c3)是(3)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0003.jpg?sign=1739912112-I22jYqFK3TmzfXz8LFQ88KezUNte1zlH-0-c5ca87e014ea8d24c167206063a7ad4b)
成立.即有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0004.jpg?sign=1739912112-PCpRPOjb9JnCKd27bBEKJYSvcmydnfRS-0-2316f8e8080131c950eab9a4c8c3b9ed)
成立.所以(c1, c2, c3)是方程组(4)的解,同理可证,如果(d1, d2, d3)是(4)的解,那么也是(3)的解,这就证明了(3)与(4)同解.
用非零数c乘以(3)中第1个方程,得方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0005.jpg?sign=1739912112-ZaKWlup6YxrocdWXqykPmTaiDshbaQ9f-0-b9d2b483a370962864a0a66daca48692)
设(e1, e2, e3)是(3)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0069_0006.jpg?sign=1739912112-I9H8mcdLtppLTuaozIory5ekXVO8Qv8B-0-d556eac4dcdec9842d5a7aeaf555e255)
成立.当c≠0时,也有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0001.jpg?sign=1739912112-krL4a2cBMRryWE4QhbfIrb5SuTXuM1qV-0-83b2061bd81532cab0d6bbdb8b8d8e42)
成立,这表明(3)的解(e1, e2, e3)也是(5)的解.反之,设(d1, d2, d3)是(5)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0002.jpg?sign=1739912112-4frerd2kquSVnoxBq12Ytubq2wXAqXI2-0-55f97557d371d560f1b5e63e69cfe9d0)
成立,因为c≠0,用乘以第1个恒等式,得恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0004.jpg?sign=1739912112-rFO0szQcvvrt7CPitdNGfqFXZxgLtdki-0-faa29f1e67f67cff79c1b7fb1f2bc4c0)
这表明(d1, d2, d3)也是(3)的解,因此(3)与(5)同解.
将(3)中第1个方程的k倍加到第2个方程上去,得方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0005.jpg?sign=1739912112-vWRH8cN6BLD4xrnUS9aBEOftZImduOUV-0-b8f0cb32a9a38fe36e580b3ba7805195)
设(c1, c2, c3)是(3)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0006.jpg?sign=1739912112-s68OQVFpISrs0Gxt4jGbgfNA9dHNE3Au-0-0cdc22554a3502e91177c7c3b12e85ce)
成立.将第1个恒等式两边乘以k加到第2个恒等式两边,得恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0070_0007.jpg?sign=1739912112-cwgjRuLM7FxiecG8Th7bI6og2YjcCanD-0-b2dc5de9af1b5610232050c67a2533aa)
这表明(3)的解(c1, c2, c3)是(6)的解.反之,设(d1, d2, d3)是(6)的解,则有恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0001.jpg?sign=1739912112-pkAIE1WuxeRXzutvwQ2M8N0ubZwFxJ2c-0-cdcf6c752021cceb7d3444389efc6749)
成立.将第1个恒等式两边乘以(-k),加到第2个恒等式两边,得恒等式组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0002.jpg?sign=1739912112-sjN5lur1iwzSBBTJm8X8hyBsRRskvpi4-0-0ae0ea1f8edc466d5600cfb0eebc26fb)
这表明(6)的解(d1, d2, d3)也是(3)的解,所以(3)与(6)同解.
今后称定理2.1.1中的三种变换为线性方程组的同解变换.
用消元法解线性方程组,就是对方程组施行一系列同解变换,使每一个方程保留一个未知量,消去其余方程中这个未知量,直到能判断出解的情况为止.
例2.1.1 解线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0003.jpg?sign=1739912112-b8D8tIxQYanN6ZwI6riNJf4qhrlt6Br7-0-6fc5f8221829c2dcee49c47bd47822cb)
解 对换 ①②,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0004.jpg?sign=1739912112-zU4fcp5yUtV5BfJezUzLQJ2LHkCz21Ju-0-463da558ce4b9e1d40f16cd5fb2ad008)
②′-4①′, ③′-3①′,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0005.jpg?sign=1739912112-T6PVsVdVKXEynsdJtlgO2XTl8mbojzLv-0-ce49a862ff0f1eafaad4e2e8cacb6d52)
③″-2②″,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0071_0006.jpg?sign=1739912112-qxdWMSdIPEu1d29ouxKcp09NP9cbJlno-0-8e108c66f6d751f26cc589bdfbde7214)
由此可知方程组有唯一解,由③‴得x3=3;将x3=3代入②‴,得x2=-1;将x2=-1, x3=3代入①‴,得x1=2,唯一解是(2, -1,3).
例2.1.2 解线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0001.jpg?sign=1739912112-bag2V8biiMaVTaUfGA9rS1J3Nqm6PXoa-0-5659f97b5cce5dc5cdb9119a6a87075a)
解 ②-4①, ③-3①,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0002.jpg?sign=1739912112-VCDLU5fYwCenQj4xl6vCzRRS441ojo4S-0-d7a0b0344bf052a3f7b0af39ae2393fd)
③′-②′,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0003.jpg?sign=1739912112-dS1LummPdYk0yLjPTeGwcSsydcMPnvsY-0-c23a867353bd01ada3e9aa3ce57e71db)
③″是矛盾方程,无解.因而方程组无解.
例2.1.3 解线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0004.jpg?sign=1739912112-Gc9T7a4ClKrllnPuSDUveHdXHdfVStk1-0-ce30891001bceca2574835e361ab6bea)
解 ②-3①, ③-4①,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0072_0005.jpg?sign=1739912112-vac1p38vRC8EJtNODhbHRqWT7dkOmGyY-0-f9da0b16117dff81607961885b7c46d7)
③′-②′,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0001.jpg?sign=1739912112-0lyYbMzRu8JqIj2qWP0wW11EJ72mLojM-0-96125b9c0f82ca215e52d4aad6a660bd)
③″是多余方程,只需解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0002.jpg?sign=1739912112-Jjj7ksDbCyt4dfNhDTwAymwWwKJdOV7y-0-763b326c952793082e11dbb6733a0030)
易见方程组有无穷多解,①″-2②″,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0003.jpg?sign=1739912112-PQwBR0nG9VOSo1rDXNQRejpMDwWeCMA0-0-00e81676085c5ef15005202243e4ef5b)
移项
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0004.jpg?sign=1739912112-nYzqC1uB2CxSLWNmctKU4H3R0NdIdPdi-0-3eaf61f09e0ab7e7599e8d1634f5da15)
x3是自由未知量,全部解为
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0005.jpg?sign=1739912112-0VDWSTpsabgS2Zy7bFOxVTGwbOAgwmzw-0-820b43c9f0be7d04c8c01da257311705)
其中c为任意数.
习题2.1
用消元法解下列线性方程组:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0073_0006.jpg?sign=1739912112-REZMQW3XSW0LnXqIcIZxD9O4uSn8vWkN-0-9d9cf48d1fe1f078edbac575c27e1325)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0074_0001.jpg?sign=1739912112-CXBleoxiwohHkfpTq8AwruVfj8GzYWvp-0-b412c3ffa7e8569ea939df9a0f43466b)