![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§1.3 行列式性质与计算
导学提纲
1.行列式有哪些性质?
2.怎么用行列式性质,将行列式化成上(下)三角形?
按n阶行列式定义(定义1.1.4)或展开公式(定理1.2.1)计算n≥5阶行列式是很复杂的.本节介绍行列式的性质,用这些性质可以将行列式化简成上(下)三角形后求值.
将行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0036_0001.jpg?sign=1739911316-EpDA0UIf2prx9rv9NtATGjWV0MHbYsrU-0-643e0f1f9f71077d457322ea32d2c88e)
的行与列对换(即以主对角线为轴翻转;亦即把第i行改成第i列,i=1,2, …, n),得行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0036_0002.jpg?sign=1739911316-1iXhMmrZeFdkSImqSPk8cVMnMwAWqmn4-0-7ce6efe78c515dc8cad2f225dd480a68)
称后者为|A|的转置行列式,记作|AT|.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1739911316-JusD4ToTXsJfUt1eCf0EavLUAi3I7zRu-0-a7c0b4cf7c899a172fb34d9241121f07)
读者可以动手算一下,这两个行列式的值都等于-24.其实|A|=|AT|是一个普遍事实.
性质1 n阶行列式|A|=|AT|.
性质1表明行列式的行有什么性质,列也有什么性质.
性质2 用数k乘以行列式|A|=|aij|nn某一行(列)的每一个元素后,所得行列式值等于k|A|.即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739911316-o348neX2USR4HkfL726NNI9ce05VrheA-0-93dd0ba0f92c5bd09319d559aafe81a9)
或
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739911316-TtOsPbK50f9tQuZ1Dg9Bi9GnVWD8vdfK-0-c193ea79b7c7d301ab14f2d4f0b394c7)
或者说,如果行列式某一行(列)所有元素有公因子k,可以将k提到行列式前面.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739911316-PeNEzPGQO4GBOR2Q7M9QpTYRpI6As0JE-0-ee23c4e65e0384d5b670892a93d351f0)
用3乘以|A|的第2行每一个元素,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0004.jpg?sign=1739911316-I9oFXCEOdQdEVquef2qZDts1nvIYyd3I-0-8eae0e71ad03005e3f3a5f1c0e4b0cad)
又例如,行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739911316-DPVXLPVeYgSlVdAEZGjWrbmnUTG4dfNo-0-32331d9d48b61b300303d6835d6c4717)
的第3列有公因子4,可将4提到行列式前面,从而简化计算.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0002.jpg?sign=1739911316-TdlN4zMJDneVo6NIwH7UU9Aaw8U28UuY-0-8bb4a73b154fdb2de4922c1641210012)
再例如,欲计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0003.jpg?sign=1739911316-wciWBFaTj0ICeD8HATf1Ny2oHxX9iJnv-0-34fedd965c3b51e75a511c87ab905705)
为避免分数运算,又要保持|A|值不变,可以将|A|的第1行乘以2,前面乘以;第3行乘以3,前面乘以
,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0006.jpg?sign=1739911316-Rb8cscUyE5IxNbEpDibubWMh8vBDtZ0n-0-84c5ef5fb3282925fb74eabdae85e224)
注意
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0007.jpg?sign=1739911316-5mXuGaN5EGDz7R1gznx5FMrohMtHbSNg-0-6c3f76fab72b1b6d023b17774877e664)
推论1.3.1 如果行列式中有一行(列)元素全为“0”,则行列式值等于零.
性质3 行列式可以按某一行(列)“拆”成两个行列式之和.即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1739911316-6Un5qp1FoplvHzZLKJmW0y3Tj9xj1o9x-0-26ac74207b6ee3682d0a298d52f44f2e)
或
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0039_0002.jpg?sign=1739911316-PZipgO4g04Qc7wyifESKrAonvDoxtAku-0-8dd9d90ece9d0b516b00af93d2b98312)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0039_0003.jpg?sign=1739911316-1oVwySRFqFQ0gJQokMWkrdkW1f9TRnT9-0-59c54c19ade21d3167ce841a7bdade22)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1739911316-Evs76Twl5rGFejp1GGSS4y4nvdZdM7Tz-0-ca5a85c30ca15a0b2be346493d11953c)
注意 下面的拆法是错误的.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0002.jpg?sign=1739911316-vDNxIb2ZLbPrO9oybI8F6aAZnx5nS9cx-0-e40bcac808b3241ec754c9ca2d880cd7)
例1.3.1
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0003.jpg?sign=1739911316-8kVCBQCAFgNuLOs308Wi1KYwK9gy2LMC-0-d054ecfcbee86e42804a9703eee0462a)
性质4 对换行列式的两行(列),行列式值反号,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0004.jpg?sign=1739911316-6aqc3OLSI4OVsjaeONVmy1jEbrDwFbx2-0-eca44c447cce0e5c6ddb6bac8d05d1c5)
或
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0001.jpg?sign=1739911316-WZwdBm0l0V5BiJ26vJUKJ9ZmBYVRoyrU-0-f15bf616e3b46f025eb649d3628c7d81)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0002.jpg?sign=1739911316-Gj2QaNLJMCb2eO9jLtFjwTPW57Wtfy03-0-eec77c27b8efa36626f2dced647b9309)
对换|A|的第1行与第3行,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0003.jpg?sign=1739911316-eyLiHXfuZURRAaJL65XR57d9jihNlDZS-0-7387d8ea3f4b8aeec490925b4c583a9c)
对换|A|的第2列与第3列,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0004.jpg?sign=1739911316-5DlU6GZKtBWd8LBe22OneQcZh6s8utr1-0-a3178e8404adf5305bb0c53a8243dbb2)
推论1.3.2 行列式中若有两行(列)元素对应相同,则行列式值等于零.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0005.jpg?sign=1739911316-8Gl6yWW3wCuqSyZJlMai9GxpRlCSGNcy-0-fe00bcfa3c74e9cf2a372583a85efb29)
证 设|A|=|aij|nn的第i行与第j行相同,对换|A|的第i行与第j行,得-|A|.由|A|=-|A|,推出2|A|=0,所以|A|=0.
推论1.3.3 若行列式中有两行(列)元素对应成比例,则行列式值等于零.
证 不失一般性,以3阶行列式为例.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0042_0001.jpg?sign=1739911316-Ky8tWi2kU1tGh1W8kSsAPK56BbsO7fXO-0-95c0639e5d367c243e5f640c3f4a9970)
性质5 将行列式某一行(列)的k倍加到另一行(列)上去,行列式值不变.
证 不失一般性,以3阶行列式|A|=|aij|为例,将|A|的第1行的k倍加到第3行上去(第1行不变,第3行变了),得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0042_0002.jpg?sign=1739911316-qc4GkohGR2kGTlb6Y5EeNLWk1Sz9FV3l-0-4113d29af658cca5d844895c0e8b67b1)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0042_0003.jpg?sign=1739911316-19PbzGrcaaJ1fULVautilE59WuhgFohb-0-f435150b400ed0c1075fc92af156cf65)
例1.3.2 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0043_0001.jpg?sign=1739911316-p1ECyskMqTtiYMNrH1tafncIbpQKv8r8-0-a9b3151cd99c69e5affc3fa5bb466c37)
分析 目标是用行列式性质将行列式化成上三角形,然后求值.
解 注1
注1:当c≠0时,表示提出第i行(列)公因子c;
表示对换第i行(列)与第j行(列);
表示把第i行(列)的k倍加到第j行(列)上去;以上记号写在等号上(下)面,表示对行(列)运算.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0043_0002.jpg?sign=1739911316-BiC8JFutXvihwQAr7wll5Nn7o6VQtCva-0-a9abe7938a8866103b3e43df52b945cf)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0044_0001.jpg?sign=1739911316-jJyGPsuqpOra8YyV0aerzHbRZVJCOSh0-0-d0ab1a2e1df47a06fa48658b5e4edf74)
例1.3.3 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0044_0002.jpg?sign=1739911316-ilLl8AnPLI2UEJPhM9F45EqNAFpbuOkQ-0-4fe9b7582c0a803a49d1fbba7c3d779d)
分析 行列式中元素有分数,为便于计算,第2列乘以3,前面除以3;第4列乘以2,前面除以2.
解法1
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0044_0003.jpg?sign=1739911316-q5Kt6yGWnNGmkAcUxwe3Jgg8ZrmPxwae-0-91ca898c5a3c4029fa3d792eacc41b7a)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0045_0001.jpg?sign=1739911316-kbvMly62KfxqKuc4KXqLlobYYrYjQroC-0-34316b3ed37e653ab997e15fec0d04c6)
解法2 继解法1第4步结果:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0045_0002.jpg?sign=1739911316-UlWHMluSbj8gxOA5gzgI1keWLfXKprQP-0-c5344040e0e8c4f5143f95ca62a871aa)
解法3 按第3列展开.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0045_0003.jpg?sign=1739911316-b0l1sCUdodO4kbGSzIgBoa6QChBlxRiq-0-d5b5c9b0a7c8b5dccff4da8506841b2e)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0046_0001.jpg?sign=1739911316-iPtQVNxhMi61v5vOSLprXTQvwJcQ08mg-0-5d20dec14eb680d90648508598164991)
解法4
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0046_0002.jpg?sign=1739911316-zJJpQf0Zh9SWEZxzu4CIu2n7IVwLzKpw-0-fffc4317deb0839489608ac61d1f0656)
例1.3.4 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0046_0003.jpg?sign=1739911316-pVEeJKdCBUY6smkv5G0PgGautqE3yYd2-0-b74029f74562c0d80ef2627617bcc284)
分析 欲直接将行列式化成上(下)三角形,需讨论a≠0, a=0.此方法不可取.另观察原式每一行元素之和相同,因此可将第2、3、4列都加到第1列,提出新的第1列公因子a+3,从而得到一个特殊的第1列.
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0001.jpg?sign=1739911316-7oaG48AGMJXB80obxcwJA5RYSPn8JISW-0-889775232c2edb3a21b8028de7730021)
请读者计算n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0002.jpg?sign=1739911316-TUaNrIEhBSs5vxM7Iivbc9zwOa0TzSKv-0-11139119600d791fac33f453e618096b)
例1.3.5 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0003.jpg?sign=1739911316-hdrMfcNwOXExmoKXRIJ2KCKLIF5gAWpT-0-938caa96ed86b6d5c93c4cf9f7081df0)
分析 原式是5阶行列式,主对角元a1, a2, a3, a4分别与右邻元素反号,所以将原式化成下三角形为宜.
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0004.jpg?sign=1739911316-Js9FfYmKy2LxomCib3MlumdhTpd0ehZd-0-ab49eca1f28757d88116558915eaddae)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0048_0001.jpg?sign=1739911316-MRSMFaOXDA5gCghwZqi0lWxxrTmidkQu-0-a9ab72a608ddd135ebe1225824add36b)
请读者计算n+1阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0048_0002.jpg?sign=1739911316-ZPlNLSHgHBFMcZPELR1cPeD8c1Kkn0Tr-0-9ba39e3ed96cd77886a0b2edb24c74fd)
例1.3.6 证明
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0048_0003.jpg?sign=1739911316-bIVExc3YjReeTeNN6rFbK8jhKWyfGRuV-0-ea85fbf9a2a00bbd1df3e77dc38d982f)
证 记等式左边为|A|,将|A|的每一行提出公因子(-1),得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0049_0001.jpg?sign=1739911316-2xTFfdYybO3gxNZOJ8NZMkIpUfvomzeJ-0-bfa92a85b15ed0ea85ffed15b69520d9)
移项,2|A|=0,所以|A|=0.
n阶行列式|A|=|aij|nn中,如果aij=-aji,则称|A|为反对称行列式.请读者证明:奇数阶反对称行列式值等于零.
例1.3.7 计算4阶范德蒙(Vandermonde)行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0049_0002.jpg?sign=1739911316-Q2nNZoIWqtxtabdyFfjHYrcfSO1XuS0F-0-569499d42726e351584cd82e5ab64884)
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0049_0003.jpg?sign=1739911316-mHr6twx7Ak5SkExDUwSFo2z95UjktbLO-0-b646c67c1723080f9f8992eadc8b7a8e)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0050_0001.jpg?sign=1739911316-p3SOb1LBtwRSex0FUDWnX27wZkcHPZbn-0-3cebb641eb0af7adae82e3cd78ff10f7)
用数学归纳法可以证明n阶范德蒙行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0050_0002.jpg?sign=1739911316-vwa42nPS8PfqnZuK00SFdSW50LjJpdlk-0-7ac4757829e57234efb7e5b1be7fa212)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0050_0003.jpg?sign=1739911316-hIbUFjj7HS3exOzn15RvTnmfP7OItQeY-0-7da7b959279cb78d334789658e5c29f8)
习题1.3
1.利用行列式性质证明下列等式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0001.jpg?sign=1739911316-ykVbNmwFebUJ8MlSKEByz1NOiJUepdxo-0-ae7dd51c8282bbba6300f0fc4c2a3710)
2.设3阶行列式|ai j|=a,求下列行列式值.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0002.jpg?sign=1739911316-M7HhyW7ZYGOzLjiNVj0XOTdTPRYK0oKb-0-6517a5f13646951bd7c6de972d99c8cd)
3.设5阶行列式|ai j|=12,依下列次序运算:对换第1列与第4列;然后转置;用2乘以所有元素;将第5行的(-3)倍加到第2行上去;再用乘以第3列每一个元素,求最后一个行列式的值.
4.填空:设
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0004.jpg?sign=1739911316-dSJ0AJJlEOE1phIIgSctcN6JWUHaDa2G-0-cd37e48d119258b8aef0fda551a66356)
那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0005.jpg?sign=1739911316-FR5fF1H9Tfspu2KQgdoeZICvUPFYMkyJ-0-0c4fdc7ed02045e1749a5d848448e712)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0052_0001.jpg?sign=1739911316-LBXVJqj2BeKV1RnK89Fw5AFRsfLjmuLG-0-625ce2ea6c0ab41374eb24265926bdaa)
5.填空:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0052_0002.jpg?sign=1739911316-vsZsMWeKYWXlwDPEmWLEGKffDPC33PTk-0-dcf33e76e67d59faaf71d73dafb0b2fe)
6.计算下列行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0052_0003.jpg?sign=1739911316-k2PxQMmmxQpDqAxktsjuEdgQcDiukFFl-0-ff0dcadc6d4b64ab968eabc1e3fd5192)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0053_0001.jpg?sign=1739911316-TrbvEcCRl4XhgE3GYZcW7xbsWayVk58T-0-271c1604fcb398eb21d958c104fa2da2)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0054_0001.jpg?sign=1739911316-8qjLKPo9HuW4wegEkflDWRRNt6vnbpce-0-03dbfc2214ab68d6ba98120d4dfbf9c8)
7.计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0055_0001.jpg?sign=1739911316-uUBcTiC5ZeJtA7S1d73MHpqX9mGNSQ54-0-80d4f6adca18ea9e873e101db8e44845)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0056_0001.jpg?sign=1739911316-noQAecdJehILU2dobE2L36KkZbKK9CVI-0-1337dda369f6b9df6eab4a7c01f26448)
8.解方程:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0056_0002.jpg?sign=1739911316-C3OIEwD2LEb7NHvHikNsz4OJvK7VBpOG-0-1b038bfdd99312dafad760bbde0fe93a)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0057_0001.jpg?sign=1739911316-sZFKqVtdl7nEJMzyBU2Q6794GqM8Abzf-0-09efef39dd6181ca85720fd693e1d905)