第13章 Preamble On The Peculiarities Of All Metaphysical
For I can only know what is contained in the object in itself when it is present and given to me. It is indeed even then incomprehensible how the visualizing [ Anschauung ] of a present thing should make me know this thing as it is in itself, as its properties cannot migrate into my faculty of representation. But even granting this possibility, a visualizing of that sort would not take place a priori, that is, before the object were presented to me; for without this latter fact no reason of a relation between my representation and the object can be imagined, unless it depend upon a direct inspiration. Therefore in one way only can my intuition [ Anschauung ] anticipate the actuality of the object, and be a cognition a priori, viz.: if my intuition contains nothing but the form of sensibility, antedating in my subjectivity all the actual impressions through which I am affected by objects. For that objects of sense can only be intuitd according to this form of sensibility I can know a priori . Hence it follows: that propositions, which concern this form of sensuous intuition only, are possible and valid for objects of the senses; as also, conversely, that intuitions which are possible a priori can never concern any other things than objects of our senses. 7 Sect. 10. Accordingly, it is only the form of sensuous intuition by which we can intuit things a priori, but by which we can know objects only as they appear to us (to our senses), not as they are in themselves; and this assumption is absolutely necessary if synthetical propositions a priori be granted as possible, or if, in case they actually occur, their possibility is to be comprehended and determined beforehand. Now, the intuitions which pure mathematics lays at the foundation of all its cognitions and judgments which appear at once apodictic and necessary are Space and Time. For mathematics must first have all its concepts in intuition, and pure mathematics in pure intuition, that is, it must construct them. If it proceeded in any other way, it would be impossible to make any headway, for mathematics proceeds, not analytically by dissection of concepts, but synthetically, and if pure intuition be wanting, there is nothing in which the matter for synthetical judgments a priori can be given. Geometry is based upon the pure intuition of space. Arithmetic accomplishes its concept of number by the successive addition of units in time; and pure mechanics especially cannot attain its concepts of motion without employing the representation of time. Both representations, however, are only intuitions; for if we omit from the empirical intuitions of bodies and their alterations (motion) everything empirical, or belonging to sensation, space and time still remain, which are therefore pure intuitions that lie a priori at the basis of the empirical. Hence they can never be omitted, but at the same time, by their being pure intuitions a priori, they prove that they are mere forms of our sensibility, which must precede all empirical intuition, or perception of actual objects, and conformably to which objects can be known a priori, but only as they appear to us. Sect. 11. The problem of the present section is therefore solved. Pure mathematics, as synthetical cognition a priori, is only possible by referring to no other objects than those of the senses. At the basis of their empirical intuition lies a pure intuition (of space and of time) which is a priori . This is possible, because the latter intuition is nothing but the mere form of sensibility, which precedes the actual appearance of the objects, in, that it, in fact, makes them possible. Yet this faculty of intuiting a priori affects not the matter of the phenomenon (that is, the sense- element in it, for this constitutes that which is empirical), but its form, viz., space and time. Should any man venture to doubt that these are determinations adhering not to things in themselves, but to their relation to our sensibility, I should be glad to know how it can be possible to know the constitution of things a priori, viz., before we have any acquaintance with them and before they are presented to us. Such, however, is the case with space and time.
But this is quite comprehensible as soon as both count for nothing more than formal conditions of our sensibility, while the objects count merely as phenomena; for then the form of the phenomenon, i.e., pure intuition, can by all means be represented as proceeding from ourselves, that is, a priori . Sect. 12. In order to add something by way of illustration and confirmation, we need only watch the ordinary and necessary procedure of geometers. All proofs of the complete congruence of two given figures (where the one can in every respect be substituted for the other) come ultimately to this that they may be made to coincide; which is evidently nothing else than a synthetical proposition resting upon immediate intuition, and this intuition must be pure, or given a priori, otherwise the proposition could not rank as apodictically certain, but would have empirical certainty only.