PHYSICS
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第55章 14(2)

So, too, movements that have simultaneous limits have the same time, yet the one may in fact be fast and the other not, and one may be locomotion and the other alteration; still the time of the two changes is the same if their number also is equal and simultaneous; and for this reason, while the movements are different and separate, the time is everywhere the same, because the number of equal and simultaneous movements is everywhere one and the same.

Now there is such a thing as locomotion, and in locomotion there is included circular movement, and everything is measured by some one thing homogeneous with it, units by a unit, horses by a horse, and similarly times by some definite time, and, as we said, time is measured by motion as well as motion by time (this being so because by a motion definite in time the quantity both of the motion and of the time is measured): if, then, what is first is the measure of everything homogeneous with it, regular circular motion is above all else the measure, because the number of this is the best known. Now neither alteration nor increase nor coming into being can be regular, but locomotion can be. This also is why time is thought to be the movement of the sphere, viz. because the other movements are measured by this, and time by this movement.

This also explains the common saying that human affairs form a circle, and that there is a circle in all other things that have a natural movement and coming into being and passing away. This is because all other things are discriminated by time, and end and begin as though conforming to a cycle; for even time itself is thought to be a circle. And this opinion again is held because time is the measure of this kind of locomotion and is itself measured by such.

So that to say that the things that come into being form a circle is to say that there is a circle of time; and this is to say that it is measured by the circular movement; for apart from the measure nothing else to be measured is observed; the whole is just a plurality of measures.

It is said rightly, too, that the number of the sheep and of the dogs is the same number if the two numbers are equal, but not the same decad or the same ten; just as the equilateral and the scalene are not the same triangle, yet they are the same figure, because they are both triangles. For things are called the same so-and-so if they do not differ by a differentia of that thing, but not if they do; e.g. triangle differs from triangle by a differentia of triangle, therefore they are different triangles; but they do not differ by a differentia of figure, but are in one and the same division of it. For a figure of the one kind is a circle and a figure of another kind of triangle, and a triangle of one kind is equilateral and a triangle of another kind scalene. They are the same figure, then, that, triangle, but not the same triangle. Therefore the number of two groups also-is the same number (for their number does not differ by a differentia of number), but it is not the same decad; for the things of which it is asserted differ; one group are dogs, and the other horses.

We have now discussed time-both time itself and the matters appropriate to the consideration of it.