PHYSICS
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第51章 12(1)

The smallest number, in the strict sense of the word 'number', is two. But of number as concrete, sometimes there is a minimum, sometimes not: e.g. of a 'line', the smallest in respect of multiplicity is two (or, if you like, one), but in respect of size there is no minimum; for every line is divided ad infinitum. Hence it is so with time. In respect of number the minimum is one (or two); in point of extent there is no minimum.

It is clear, too, that time is not described as fast or slow, but as many or few and as long or short. For as continuous it is long or short and as a number many or few, but it is not fast or slow-any more than any number with which we number is fast or slow.

Further, there is the same time everywhere at once, but not the same time before and after, for while the present change is one, the change which has happened and that which will happen are different. Time is not number with which we count, but the number of things which are counted, and this according as it occurs before or after is always different, for the 'nows' are different. And the number of a hundred horses and a hundred men is the same, but the things numbered are different-the horses from the men. Further, as a movement can be one and the same again and again, so too can time, e.g. a year or a spring or an autumn.

Not only do we measure the movement by the time, but also the time by the movement, because they define each other. The time marks the movement, since it is its number, and the movement the time. We describe the time as much or little, measuring it by the movement, just as we know the number by what is numbered, e.g. the number of the horses by one horse as the unit. For we know how many horses there are by the use of the number; and again by using the one horse as unit we know the number of the horses itself. So it is with the time and the movement; for we measure the movement by the time and vice versa. It is natural that this should happen; for the movement goes with the distance and the time with the movement, because they are quanta and continuous and divisible. The movement has these attributes because the distance is of this nature, and the time has them because of the movement. And we measure both the distance by the movement and the movement by the distance; for we say that the road is long, if the journey is long, and that this is long, if the road is long-the time, too, if the movement, and the movement, if the time.

Time is a measure of motion and of being moved, and it measures the motion by determining a motion which will measure exactly the whole motion, as the cubit does the length by determining an amount which will measure out the whole. Further 'to be in time' means for movement, that both it and its essence are measured by time (for simultaneously it measures both the movement and its essence, and this is what being in time means for it, that its essence should be measured).

Clearly then 'to be in time' has the same meaning for other things also, namely, that their being should be measured by time. 'To be in time' is one of two things: (1) to exist when time exists, (2) as we say of some things that they are 'in number'. The latter means either what is a part or mode of number-in general, something which belongs to number-or that things have a number.

Now, since time is number, the 'now' and the 'before' and the like are in time, just as 'unit' and 'odd' and 'even' are in number, i.e. in the sense that the one set belongs to number, the other to time.

But things are in time as they are in number. If this is so, they are contained by time as things in place are contained by place.