0.3 仪表的基本技术指标
自动化仪表和其他仪表一样,在保证可靠工作的前提下,有如下一些衡量其性能优劣的基本指标。
1.精确度
任何仪表都有一定的误差。因此,使用仪表时必须先知道该仪表的精确程度,以便估计测量结果与真实值的差距,即估计测量值的误差大小。
模拟式仪表的精确度一般不宜用绝对误差(测量值与真实值的差)和相对误差(绝对误差与该点的真实值之比)来表示,因为前者不能体现对不同量程仪表的合理要求,后者很容易引起任何仪表都不能相信的误解。例如,对一只满量程为100mA的电流表,在测量零电流时,由于机械摩擦使表针的显示偏离零位而得到0.2mA的读数,若按上述相对误差的算法,那么该点的相对误差即为无穷大,似乎这个仪表是完全不能使用的;但在工程人员看来,出现这样的测量误差是很容易理解的,根本不值得大惊小怪,它可能还是一只比较精密的仪表呢!
模拟式仪表的合理精确度,应该以测量范围中最大的绝对误差和该仪表的测量范围之比来衡量,这种比值称为相对(于满量程的)百分误差。例如,某温度计的刻度由-50℃到+150℃,即其测量范围为200℃,若在这个测量范围内,最大测量误差不超过3℃,则其相对百分误差δ为
仪表工业规定,去掉上式中相对百分误差的“%”,称为仪表的精确度。它划分成若干等级,如0.1级,0.2级,0.5级,1.0级,1.5级,2.5级等。上述温度计的精确度即为1.5级。
仪表的误差还根据使用条件分为基本误差和附加误差两种。基本误差是指仪表在正常工作条件下的最大相对百分误差。若仪表不在规定的正常条件下工作,例如,因周围温度、电源电压等偏高或偏低而引起的额外误差,称为附加误差。仪表的精确度等级是根据其基本误差确定的。
2.灵敏度和灵敏限
灵敏度表示测量仪表对被测参数变化的敏感程度,常以仪表输出(如指示装置的直线位移或角位移)与引起此输出的被测参数变化量之比表示,即
式中,Δa为仪表指示装置的直线位移或角位移;Δx为被测参数的变化值。
仪表的灵敏度可用增加放大系统的放大倍数来提高。但是,单纯提高仪表的灵敏度并不一定能提高仪表的精确度,例如,把一个电流表的指针接得很长,虽然可把直线位移的灵敏度提高,但其读数的精确度并不一定提高。相反,可能由于平衡状况变坏而精确度反而下降。为了防止这种虚假灵敏度,常规定仪表读数标尺的分格值不能小于仪表允许误差的绝对值。
仪表的灵敏限,是指仪表能感受并发生动作的输入量的最小值。
3.变差
在外界条件不变的情况下,使用同一仪表对被测参量进行反复测量(正行程和反行程)时,所产生的最大差值与测量范围之比称为变差。造成变差的原因很多,例如,传动机构间存在的间隙和摩擦力,弹性元件的弹性滞后等。在设计和制造仪表时,必须尽量减小变差的数值。一个仪表的变差越小,其输出的重复性和稳定性越好。
仪表除静态误差外,在输入量随时间变化时,由于仪表内部的惯性和滞后,还存在动态误差。对自动化仪表来说,因为它工作在调节系统的闭环之中,其动态特性不仅影响自身的输出,还直接影响整个调节系统的调节质量。例如,在一个调节系统中,若检测仪表的惯性比调节对象的惯性还大,那么不仅系统的调节速度被减慢,而且在过渡过程中检测仪表不能及时反映真实的情况,被调量可能存在很大的冲击和波动,但检测仪表的指示却很平稳,这种虚假的现象会给生产造成严重的损失。因此,在选用自动化仪表时,必须对其动态特性予以充分的重视,根据需要,尽量减小仪表的惯性和滞后,使之快速和准确地响应输入量的变化。