网站数据挖掘与分析:系统方法与商业实践
上QQ阅读APP看书,第一时间看更新

1.1.3 常见的几种“分析”概念

在业务实践中,有很多“分析”概念会让大家感到疑惑,从而直接影响从业者的职业规划,其包括职业定位、发展路线等。因此有必要将几种最常见的“分析”概念进行介绍,为大家今后的职业定位和发展提供帮助。

1.数据统计

数据统计是对最初级的数据从业者的定位,其含义如其字面意思——统计,具体工作是从海量数据中进行数据提取、数据清洗、数据汇总和基本输出工作。数据统计是所有公司必不可少的工作内容,由于该工作不需要具有太高的技术含量,因此其替代性非常强,通常该工作会通过数据产品自动化来实现。

数据统计要求从业者具有良好的数据提取和处理能力,核心需求能力是能熟练掌握SQL的使用技能及Excel的使用技能,这是从业者职业发展的开始。

统计类工作的定位一般是初级分析师或数据分析员。我们常见的统计工作如日报、周报、月报、季报、年报等,直接陈列数据、报表等类型的报告皆属于此类工作的典型内容。

2.数据分析

数据分析是在数据统计基础上的必要延伸,也是数据从业者的必经阶段。数据分析的基本流程通常包括需求收集、需求处理、需求评估、数据准备、数据分析、数据展现,除了基本流程外,通常还会包括业务沟通、业务优化等过程。数据分析的需求常见于大中型公司,小型公司的分析类需求较少,更多的是侧重于统计需求。

数据分析对从业者的要求较数据统计高,需要从业者具备良好的数据处理和分析能力,同时由于数据要符合落地性的需求,要求从业者需要具备基本的业务常识和经验,以保证数据分析的结果有用、可用、易用,进而推动业务人员理解数据、分析业务、优化业务。

分析类工作根据从业者的层次不同,通常会分为中级分析师、高级分析师、首席分析师等,不同公司对分析师的级别定义不同,但作为中高级分析师,其关注点不仅是数据本身,而是更侧重于从数据中挖掘价值、发现业务,进而优化其可优化的节点。常见的分析类工作包括专项类分析、市场类分析、项目类分析等。

3.数据挖掘

数据挖掘严格意义上属于数据分析的一部分,但由于其独特的技术技能要求及应用领域,已经从数据分析中脱离出来形成单独的数据职业。数据挖掘是指从海量的数据中挖掘其隐含的、潜在的数据价值的过程,侧重点是针对未知知识的探索。

数据挖掘要求从业者在人工智能、机器学习等挖掘技术中至少掌握一门数据挖掘技术,并且需要特定程序和语言进行输出,展示层面需要具有一定的可视化技术来解释挖掘结果和价值,因此具有较高的数据从业要求。

数据挖掘从业者的公司定位,根据面向对象的不同可分为以下两种。

·业务类数据挖掘工程师:其侧重点是运用数据挖掘算法为业务提供数据分析和挖掘价值点,直接优化业务运作。

·技术类数据挖掘工程师:其侧重点是通过数据挖掘算法的优化和改进,为数据产品如DSP、RTB、个性化推荐等提供算法支持,是整个数据产品的重要环节。

4.网站分析

网站分析是数据分析的一个分支,其在数据分析的基础上拓展了数据的上下游工作,上游包括数据采集、数据存储、数据处理,下游包括数据展示、数据优化。因此网站分析相对于其他“分析”类概念具备相对完整的数据生态环境,即网站分析涵盖了整个数据从采集、存储、处理、分析、展现和应用优化的全过程。

网站分析要求从业者了解互联网运行的基本机制,掌握网页设计的相关技术,作为网站分析的工具载体——网站分析系统,也需要熟练掌握和应用,网站分析的基本方法、概念和定义也需要熟稔于心,当然,最重要的还是要具备商业意识,要把数据的价值应用到业务中实现其价值。

网站分析作为一个特殊的职业,通常定位于与流量相关的业务体系中,如营销中心、品牌中心、推广中心等,公司人员定位包括初级网站分析师、中级网站分析师和高级网站分析师。网站分析工作的核心是围绕网站数据的产生、优化和落地,因此更多侧重于营销、网站运营、用户体验和在线销售的数据支持。