会员
欧拉的宝石:从多面体公式到拓扑学的诞生
(美)大卫·S.里奇森更新时间:2024-08-15 17:11:01
最新章节:附录B 推荐阅读材料开会员,本书免费读 >
莱昂哈德·欧拉的多面体公式V-E+F=2被数学家们誉为第二优美的数学定理。从足球和宝石到美妙的穹顶建筑,这一公式描述了许多物体的结构。本书围绕欧拉多面体公式及其数学思想,从古希腊数学讲起,直到当代拓扑学的前沿研究,介绍了这一公式的发现及其对拓扑学研究的深远影响。书中包括丰富的插图与例子,展示了多面体公式的许多优雅而出人意料的应用,例如说明为什么地球上总有一些无风的地方,如何通过数树来测量林地的面积,以及为任何地图涂色需要多少支蜡笔,等等。在书中,读者将看到一群质疑、完善多面体公式和为这个非凡定理的发展做出贡献的杰出数学家,在数学史的长河中,他们都多面体的研究和拓扑学的发展做出了自己的贡献。本书适合对数学,尤其是拓扑学及数学史感兴趣的读者阅读。
品牌:人邮图书
译者:章自尧
上架时间:2024-08-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
(美)大卫·S.里奇森
主页
同类热门书
最新上架
算法简史:从美索不达米亚到人工智能时代
21世纪的今天,我们生活的方方面面无时无刻不在被算法影响和塑造。它们帮我们选择最佳的行车路线,向我们推荐我们可能购买的商品,为我们识别语音和图像,甚至给单身人士匹配婚恋对象。越发强大的算法也在不断突破极限,无论是打败围棋世界冠军柯洁,借助大语言模型与人类会话,还是在200秒内完成超级计算机1万年才能完成的计算。然而,算法并非新近才开始影响人类社会,人类受益于算法已经有数千年的历史。在《算法简史:从自然15.1万字- 会员
数学建模与数学规划:方法、案例及编程实战(Python+COPT/Gurobi实现)
本书主要从数学规划的视角出发,系统地介绍了数学优化问题建模和求解的相关理论、方法、实际案例,以及基于Python和数学规划求解器(COPT和Gurobi)的编程实战。全书共分为四部分。第一部分为基本理论和建模方法,重点介绍了数学规划模型分类和建模方法(包括逻辑约束与大M建模方法、线性化方法)以及计算复杂性理论。第二部分为建模案例详解,通过理论、案例和实战相结合的方式,详细介绍了如何利用各种建模方法自然15.9万字 - 会员
线性代数与Python解法
本书共5章:第1章介绍代数系统的基本概念,内容包括集合与映射、群、环、域及线性代数系统等;第2章介绍矩阵代数,内容包括矩阵定义、矩阵的各种运算,如线性运算、乘法、转置、方阵的行列式等,并由此讨论可逆阵的概念及性质;第3章介绍线性方程组的消元法,为后面讲解向量空间的知识奠定基础;第4章基于矩阵、线性方程组等讨论应用广泛的向量空间,内容包括向量及其线性运算、向量组的线性相关性、线性空间的线性变换等;在自然6.1万字