
会员
使用GitOps实现Kubernetes的持续部署:模式、流程及工具
(美)比利·袁等更新时间:2023-05-06 18:21:34
最新章节:封底开会员,本书免费读 >
本书提供了通过GitOps使用Kubernetes的实用教程,内容涵盖GitOps的实践、技术和工具,它们可以简化Kubernetes来更快地交付企业级软件,而不影响安全性。通过阅读本书,你将了解GitOps在灵活的配置管理、监控、健壮性、多环境支持和安全性等方面的好处,并掌握以独特的GitOps方式进行管理的技巧。学完本书,你将能够实现和管理一个可伸缩的持续交付管道,这使得跟踪更改、回滚错误以及清晰地验证和审计容器部署变得容易。
品牌:机械工业出版社
译者:张扬 黄亚铭
上架时间:2023-01-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
(美)比利·袁等
主页
同类热门书
最新上架
- 会员
MySQL数据库基础实例教程
本书较全面地介绍了MySQL数据库的基础知识及其应用。本书共11章,包括数据库基础,MySQL的安装与配置,数据库的基本操作,数据表的基本操作,表数据的增、改、删操作,数据查询,视图,索引,存储过程与触发器,事务,数据安全等内容。本书采用案例教学方式,每章以应用实例的方式阐述知识要点,再通过实训项目分析综合应用,最后辅以思考与练习巩固所学知识。应用实例、实训项目、思考与练习这3个部分分别采用3个不计算机7.8万字 - 会员
数据挖掘算法实践与案例详解
数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字 - 会员
Power BI商业数据分析完全自学教程
本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使计算机0字 - 会员
Python数据分析与挖掘实战
本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预计算机13.6万字 - 会员
大数据导论
本书围绕新工科背景下大数据人才培养需求编写,既涵盖了大数据的基础知识,又介绍了大数据分析的相关工具与案例。全书共9章,介绍了大数据采集与预处理、大数据存储与管理、大数据处理与分析、大数据可视化处理流程;重点分析了科大讯飞大数据平台在政务、交通、金融和用户画像等实际场景中的应用,还介绍了大数据实验环境的详细搭建步骤,方便读者快速理解和体验大数据应用技术;最后介绍了大数据治理中法律政策、行业标准建设的计算机14.5万字 - 会员
码上行动:利用Python与ChatGPT高效搞定Excel数据分析
本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。计算机8.5万字 - 会员
Python数据分析、挖掘与可视化从入门到精通
本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。计算机10.9万字 - 会员
算法设计与分析
为了便于读者进行系统学习、分类整理知识点及遇到问题时能够快速找到求解的方法,本书按照算法策略进行划分,每一章都引入了若干个经典问题。通过问题的分析、计算模型的建立、算法的设计与描述、算法的分析来深入解读每一种算法策略所能解决的问题范畴及方法。全书共分9章,内容包括:算法设计基础、算法效率分析基础、迭代法、蛮力法、分治策略、回溯与分支界限、贪心算法、动态规划、随机算法。本书非常注重教材的可读性和实用计算机9.4万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字
同类书籍最近更新
- 会员
Python绝技:运用Python成为顶级数据工程师
Python已成为广受数据科学领域欢迎的开发语言。《Python绝技:运用Python成为数据工程师》契合这一趋势,结合具体的业务场景,从数据思维的角度出发,剖析各业务环节中数据处理的策略、算法,并运用Python代码呈现翔实的案例,构建出一个完整的数据分析体系。数据库7.7万字 - 会员
大数据:规划、实施、运维
本书将为你答疑解惑。本书将展现作者在国内外大数据最线的实战经验,面向不同行业的共性诉求来指导读者大数据该怎么做,并阐明大数据发展的误区。本书对大数据,从经济价值、商业模式、框架搭建、数据挖掘、网络布置、安全防护、人员能力和后续运维管理多个维度,以及基础设施、中间件、重点应用等多个层面进行系统阐述。数据库37.8万字 - 会员
数据挖掘技术及其在恒星光谱分析中的应用研究
本书针对当前恒星光谱分析面临的主要问题,利用数据挖掘方法,对恒星光谱分类、稀有天体光谱自动发现、天文大数据挖掘等方面的内容展开研究。本书将定性与定量研究、理论与实证研究相结合,融合多个学科的研究成果,在研究方法和手段上有所创新。本书既有翔实的理论阐述,又有系列的公式推导,严谨可信,具有较高的理论研究价值;同时,本书提出的一些新型模型和理论框架具有较高的应用价值。数据库9.4万字 - 会员
Spark 3.0大数据分析与挖掘:基于机器学习
Spark作为新兴的、应用范围广泛的大数据处理开源框架,吸引了大量的大数据分析与挖掘从业人员进行相关内容的学习与开发,其中ML是Spark3.0机器学习框架使用的核心。本书用于Spark3.0ML大数据分析与挖掘入门,配套示例源码、PPT课件、数据集、思维导图、开发环境和作者答疑服务。本书共分13章,从Spark3.0大数据分析概述、基础安装和配置开始,依次介绍ML的DataFrame、ML的基本数据库8万字 - 会员
MySQL 8.x从入门到精通(视频教学版)
MySQL是比较受欢迎的开源关系型数据库之一。本书通过大量实用的操作案例,详细讲解MySQL8.x数据库操作方法和技巧。本书配套资源提供了所有例子的源代码、PPT课件、培训班形式的同步教学视频、命令速查手册、QQ群与微信群答疑,以方便读者参考和自学。本书共分25章。主要内容包括MySQL8.x的安装与配置、数据库和数据表基本操作、数据类型和运算符、MySQL函数、数据的增删改查、索引的设计和使用、数据库23.5万字 - 会员
Pandas数据分析快速上手500招(微课视频版)
本书采用“问题描述+解决方案”模式,通过500个案例介绍了使用Pandas进行数据分析和数据处理的技术亮点。全书共分为8章,主要案例包括:读写CSV、Excel、JSON、HTML等格式的数据;根据行标签、列名和行列数字索引筛选和修改数据,使用各种函数根据数据大小、日期范围、正则表达式、lambda表达式、文本类型等多种条件筛选数据;统计NaN(缺失值)的数量、占比,根据规则填充和删除NaN;在D数据库10.9万字