
会员
大数据分析:R基础及应用
更新时间:2021-03-19 19:26:40
最新章节:参考文献开会员,本书免费读 >
在大数据时代,R以其强大的数据分析挖掘、可视化绘图等功能,越来越受到社会各个领域的青睐。现在,R的计算引擎、性能、程序包都得到了提升,其中R与大数据分析平台Hadoop的结合,实现了R对大数据的分析式处理分析。这些不仅大大扩展了R的应用,也扩大了R在各行业的需求。为了更好地适应新形势,掌握大数据分析处理的相关知识是很有必要的。本书从理论基础、方法、实证三方面详细地阐释了R和RHadoop的相关理论、技术以及应用,使读者了解大数据的基础概念,掌握R以及Rhadoop大数据分析技术。本书不仅适合高等院校的各相关专业的本专科生、研究生,也适合零编程基础的科研人员以及对大数据分析技术感兴趣的人士阅读。本书在内容的选择和结构的安排上进行了深入的思考,使得不论是R或RHadoop的初学者还是具备一定相关专业知识的人员都能从本书中得到一定的收获或启发。
品牌:清华大学
上架时间:2016-03-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
最新上架
- 会员
云数据中心基础
本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云计算机12.1万字 - 会员
大数据SQL优化:原理与实践
这是一本站在一线开发人员的视角,从SQL的本质出发,采用理论与实践相结合、案例与分析相结合、作者经验与一线需求相结合的方式,深度解读大数据SQL优化核心技术和解决方案的工具书。本书主要面向大数据初中级技术人员,期望帮大家深度理解大数据SQL优化原理,掌握SQL优化的落地实践方法,从而真正“玩转”大数据SQL优化技术,根据实际问题和需求设计出有针对性的提升SQL性能的解决方案。计算机14万字 - 会员
算法设计与分析
为了便于读者进行系统学习、分类整理知识点及遇到问题时能够快速找到求解的方法,本书按照算法策略进行划分,每一章都引入了若干个经典问题。通过问题的分析、计算模型的建立、算法的设计与描述、算法的分析来深入解读每一种算法策略所能解决的问题范畴及方法。全书共分9章,内容包括:算法设计基础、算法效率分析基础、迭代法、蛮力法、分治策略、回溯与分支界限、贪心算法、动态规划、随机算法。本书非常注重教材的可读性和实用计算机9.4万字 - 会员
MySQL数据库实用教程
本书瞄准当前高校MySQL数据库教学与实验的需求,在MySQL8.0的基础上编写而成。全书分为两篇。第一篇为MySQL数据库基础,内容包含:数据库基础、MySQL语言、数据定义、数据操纵、数据查询、视图和索引、MySQL编程技术、MySQL安全管理、备份和恢复、事务管理、PHP和MySQL教学管理系统开发。第二篇为MySQL实验,所编排的各个实验与第一篇中的各章(除第10、11章外)内容相对应,计算机12万字 - 会员
大数据导论
本书围绕新工科背景下大数据人才培养需求编写,既涵盖了大数据的基础知识,又介绍了大数据分析的相关工具与案例。全书共9章,介绍了大数据采集与预处理、大数据存储与管理、大数据处理与分析、大数据可视化处理流程;重点分析了科大讯飞大数据平台在政务、交通、金融和用户画像等实际场景中的应用,还介绍了大数据实验环境的详细搭建步骤,方便读者快速理解和体验大数据应用技术;最后介绍了大数据治理中法律政策、行业标准建设的计算机14.5万字 - 会员
码上行动:利用Python与ChatGPT高效搞定Excel数据分析
本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。计算机8.5万字 - 会员
MySQL数据库基础实例教程
本书较全面地介绍了MySQL数据库的基础知识及其应用。本书共11章,包括数据库基础,MySQL的安装与配置,数据库的基本操作,数据表的基本操作,表数据的增、改、删操作,数据查询,视图,索引,存储过程与触发器,事务,数据安全等内容。本书采用案例教学方式,每章以应用实例的方式阐述知识要点,再通过实训项目分析综合应用,最后辅以思考与练习巩固所学知识。应用实例、实训项目、思考与练习这3个部分分别采用3个不计算机7.8万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
Power BI商业数据分析完全自学教程
本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使计算机0字